MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniorsuc Structured version   Unicode version

Theorem orduniorsuc 6671
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniorsuc  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )

Proof of Theorem orduniorsuc
StepHypRef Expression
1 orduniss 5536 . . . . . 6  |-  ( Ord 
A  ->  U. A  C_  A )
2 orduni 6635 . . . . . . . 8  |-  ( Ord 
A  ->  Ord  U. A
)
3 ordelssne 5469 . . . . . . . 8  |-  ( ( Ord  U. A  /\  Ord  A )  ->  ( U. A  e.  A  <->  ( U. A  C_  A  /\  U. A  =/=  A
) ) )
42, 3mpancom 673 . . . . . . 7  |-  ( Ord 
A  ->  ( U. A  e.  A  <->  ( U. A  C_  A  /\  U. A  =/=  A ) ) )
54biimprd 226 . . . . . 6  |-  ( Ord 
A  ->  ( ( U. A  C_  A  /\  U. A  =/=  A )  ->  U. A  e.  A
) )
61, 5mpand 679 . . . . 5  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  U. A  e.  A ) )
7 ordsucss 6659 . . . . 5  |-  ( Ord 
A  ->  ( U. A  e.  A  ->  suc  U. A  C_  A ) )
86, 7syld 45 . . . 4  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  suc  U. A  C_  A )
)
9 ordsucuni 6670 . . . 4  |-  ( Ord 
A  ->  A  C_  suc  U. A )
108, 9jctild 545 . . 3  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  ( A  C_  suc  U. A  /\  suc  U. A  C_  A ) ) )
11 df-ne 2616 . . . 4  |-  ( A  =/=  U. A  <->  -.  A  =  U. A )
12 necom 2689 . . . 4  |-  ( A  =/=  U. A  <->  U. A  =/= 
A )
1311, 12bitr3i 254 . . 3  |-  ( -.  A  =  U. A  <->  U. A  =/=  A )
14 eqss 3479 . . 3  |-  ( A  =  suc  U. A  <->  ( A  C_  suc  U. A  /\  suc  U. A  C_  A ) )
1510, 13, 143imtr4g 273 . 2  |-  ( Ord 
A  ->  ( -.  A  =  U. A  ->  A  =  suc  U. A
) )
1615orrd 379 1  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614    C_ wss 3436   U.cuni 4219   Ord word 5441   suc csuc 5444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-tr 4519  df-eprel 4764  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-ord 5445  df-on 5446  df-suc 5448
This theorem is referenced by:  onuniorsuci  6680  oeeulem  7313  cantnfp1lem2  8192  cantnflem1  8202  cnfcom2lem  8214  dfac12lem1  8580  dfac12lem2  8581  ttukeylem3  8948  ttukeylem5  8950  ttukeylem6  8951  ordtoplem  31100  ordcmp  31112  onsucuni3  31734  aomclem5  35886
  Copyright terms: Public domain W3C validator