MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduninsuc Structured version   Unicode version

Theorem orduninsuc 6663
Description: An ordinal equal to its union is not a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
orduninsuc  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem orduninsuc
StepHypRef Expression
1 ordeleqon 6609 . 2  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
2 id 22 . . . . . 6  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  A  =  if ( A  e.  On ,  A ,  (/) ) )
3 unieq 4242 . . . . . 6  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  U. A  =  U. if ( A  e.  On ,  A ,  (/) ) )
42, 3eqeq12d 2465 . . . . 5  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( A  =  U. A  <->  if ( A  e.  On ,  A ,  (/) )  = 
U. if ( A  e.  On ,  A ,  (/) ) ) )
5 eqeq1 2447 . . . . . . 7  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( A  =  suc  x  <->  if ( A  e.  On ,  A ,  (/) )  =  suc  x ) )
65rexbidv 2954 . . . . . 6  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( E. x  e.  On  A  =  suc  x  <->  E. x  e.  On  if ( A  e.  On ,  A ,  (/) )  =  suc  x ) )
76notbid 294 . . . . 5  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( -.  E. x  e.  On  A  =  suc  x  <->  -.  E. x  e.  On  if ( A  e.  On ,  A ,  (/) )  =  suc  x ) )
84, 7bibi12d 321 . . . 4  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  (
( A  =  U. A 
<->  -.  E. x  e.  On  A  =  suc  x )  <->  ( if ( A  e.  On ,  A ,  (/) )  = 
U. if ( A  e.  On ,  A ,  (/) )  <->  -.  E. x  e.  On  if ( A  e.  On ,  A ,  (/) )  =  suc  x ) ) )
9 0elon 4921 . . . . . 6  |-  (/)  e.  On
109elimel 3989 . . . . 5  |-  if ( A  e.  On ,  A ,  (/) )  e.  On
1110onuninsuci 6660 . . . 4  |-  ( if ( A  e.  On ,  A ,  (/) )  = 
U. if ( A  e.  On ,  A ,  (/) )  <->  -.  E. x  e.  On  if ( A  e.  On ,  A ,  (/) )  =  suc  x )
128, 11dedth 3978 . . 3  |-  ( A  e.  On  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
13 unon 6651 . . . . . 6  |-  U. On  =  On
1413eqcomi 2456 . . . . 5  |-  On  =  U. On
15 onprc 6605 . . . . . . . 8  |-  -.  On  e.  _V
16 vex 3098 . . . . . . . . . 10  |-  x  e. 
_V
1716sucex 6631 . . . . . . . . 9  |-  suc  x  e.  _V
18 eleq1 2515 . . . . . . . . 9  |-  ( On  =  suc  x  -> 
( On  e.  _V  <->  suc  x  e.  _V )
)
1917, 18mpbiri 233 . . . . . . . 8  |-  ( On  =  suc  x  ->  On  e.  _V )
2015, 19mto 176 . . . . . . 7  |-  -.  On  =  suc  x
2120a1i 11 . . . . . 6  |-  ( x  e.  On  ->  -.  On  =  suc  x )
2221nrex 2898 . . . . 5  |-  -.  E. x  e.  On  On  =  suc  x
2314, 222th 239 . . . 4  |-  ( On  =  U. On  <->  -.  E. x  e.  On  On  =  suc  x )
24 id 22 . . . . . 6  |-  ( A  =  On  ->  A  =  On )
25 unieq 4242 . . . . . 6  |-  ( A  =  On  ->  U. A  =  U. On )
2624, 25eqeq12d 2465 . . . . 5  |-  ( A  =  On  ->  ( A  =  U. A  <->  On  =  U. On ) )
27 eqeq1 2447 . . . . . . 7  |-  ( A  =  On  ->  ( A  =  suc  x  <->  On  =  suc  x ) )
2827rexbidv 2954 . . . . . 6  |-  ( A  =  On  ->  ( E. x  e.  On  A  =  suc  x  <->  E. x  e.  On  On  =  suc  x ) )
2928notbid 294 . . . . 5  |-  ( A  =  On  ->  ( -.  E. x  e.  On  A  =  suc  x  <->  -.  E. x  e.  On  On  =  suc  x ) )
3026, 29bibi12d 321 . . . 4  |-  ( A  =  On  ->  (
( A  =  U. A 
<->  -.  E. x  e.  On  A  =  suc  x )  <->  ( On  =  U. On  <->  -.  E. x  e.  On  On  =  suc  x ) ) )
3123, 30mpbiri 233 . . 3  |-  ( A  =  On  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
3212, 31jaoi 379 . 2  |-  ( ( A  e.  On  \/  A  =  On )  ->  ( A  =  U. A 
<->  -.  E. x  e.  On  A  =  suc  x ) )
331, 32sylbi 195 1  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    = wceq 1383    e. wcel 1804   E.wrex 2794   _Vcvv 3095   (/)c0 3770   ifcif 3926   U.cuni 4234   Ord word 4867   Oncon0 4868   suc csuc 4870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-suc 4874
This theorem is referenced by:  ordunisuc2  6664  ordzsl  6665  dflim3  6667  nnsuc  6702
  Copyright terms: Public domain W3C validator