MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunel Structured version   Unicode version

Theorem ordunel 6635
Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
ordunel  |-  ( ( Ord  A  /\  B  e.  A  /\  C  e.  A )  ->  ( B  u.  C )  e.  A )

Proof of Theorem ordunel
StepHypRef Expression
1 prssi 4172 . . 3  |-  ( ( B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A )
213adant1 1012 . 2  |-  ( ( Ord  A  /\  B  e.  A  /\  C  e.  A )  ->  { B ,  C }  C_  A
)
3 ordelon 4891 . . . 4  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  On )
433adant3 1014 . . 3  |-  ( ( Ord  A  /\  B  e.  A  /\  C  e.  A )  ->  B  e.  On )
5 ordelon 4891 . . . 4  |-  ( ( Ord  A  /\  C  e.  A )  ->  C  e.  On )
653adant2 1013 . . 3  |-  ( ( Ord  A  /\  B  e.  A  /\  C  e.  A )  ->  C  e.  On )
7 ordunpr 6634 . . 3  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  u.  C
)  e.  { B ,  C } )
84, 6, 7syl2anc 659 . 2  |-  ( ( Ord  A  /\  B  e.  A  /\  C  e.  A )  ->  ( B  u.  C )  e.  { B ,  C } )
92, 8sseldd 3490 1  |-  ( ( Ord  A  /\  B  e.  A  /\  C  e.  A )  ->  ( B  u.  C )  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971    e. wcel 1823    u. cun 3459    C_ wss 3461   {cpr 4018   Ord word 4866   Oncon0 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-tr 4533  df-eprel 4780  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871
This theorem is referenced by:  oaabs2  7286  dffi3  7883  unwf  8219  rankelun  8281  infxpenlem  8382  cfsmolem  8641  r1limwun  9103  wunex2  9105
  Copyright terms: Public domain W3C validator