MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem9 Structured version   Unicode version

Theorem ordtypelem9 7739
Description: Lemma for ordtype 7745. Either the function OrdIso is an isomorphism onto all of  A, or OrdIso is not a set, which by oif 7743 implies that either  ran  O 
C_  A is a proper class or  dom  O  =  On. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
ordtypelem9.1  |-  ( ph  ->  O  e.  _V )
Assertion
Ref Expression
ordtypelem9  |-  ( ph  ->  O  Isom  _E  ,  R  ( dom  O ,  A
) )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem9
Dummy variables  a 
b  c  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3  |-  F  = recs ( G )
2 ordtypelem.2 . . 3  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
3 ordtypelem.3 . . 3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
4 ordtypelem.5 . . 3  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
5 ordtypelem.6 . . 3  |-  O  = OrdIso
( R ,  A
)
6 ordtypelem.7 . . 3  |-  ( ph  ->  R  We  A )
7 ordtypelem.8 . . 3  |-  ( ph  ->  R Se  A )
81, 2, 3, 4, 5, 6, 7ordtypelem8 7738 . 2  |-  ( ph  ->  O  Isom  _E  ,  R  ( dom  O ,  ran  O ) )
91, 2, 3, 4, 5, 6, 7ordtypelem4 7734 . . . . 5  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
10 frn 5564 . . . . 5  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  ran  O  C_  A )
119, 10syl 16 . . . 4  |-  ( ph  ->  ran  O  C_  A
)
121, 2, 3, 4, 5, 6, 7ordtypelem2 7732 . . . . . . . . . . . . 13  |-  ( ph  ->  Ord  T )
13 ordirr 4736 . . . . . . . . . . . . 13  |-  ( Ord 
T  ->  -.  T  e.  T )
1412, 13syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  -.  T  e.  T
)
151tfr1a 6852 . . . . . . . . . . . . . . . 16  |-  ( Fun 
F  /\  Lim  dom  F
)
1615simpri 462 . . . . . . . . . . . . . . 15  |-  Lim  dom  F
17 limord 4777 . . . . . . . . . . . . . . 15  |-  ( Lim 
dom  F  ->  Ord  dom  F )
1816, 17ax-mp 5 . . . . . . . . . . . . . 14  |-  Ord  dom  F
191, 2, 3, 4, 5, 6, 7ordtypelem1 7731 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  O  =  ( F  |`  T ) )
20 ordtypelem9.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  O  e.  _V )
2119, 20eqeltrrd 2517 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  |`  T )  e.  _V )
221tfr2b 6854 . . . . . . . . . . . . . . . 16  |-  ( Ord 
T  ->  ( T  e.  dom  F  <->  ( F  |`  T )  e.  _V ) )
2312, 22syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  e.  dom  F  <-> 
( F  |`  T )  e.  _V ) )
2421, 23mpbird 232 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  dom  F
)
25 ordelon 4742 . . . . . . . . . . . . . 14  |-  ( ( Ord  dom  F  /\  T  e.  dom  F )  ->  T  e.  On )
2618, 24, 25sylancr 663 . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  On )
27 imaeq2 5164 . . . . . . . . . . . . . . . . 17  |-  ( a  =  T  ->  ( F " a )  =  ( F " T
) )
2827raleqdv 2922 . . . . . . . . . . . . . . . 16  |-  ( a  =  T  ->  ( A. c  e.  ( F " a ) c R b  <->  A. c  e.  ( F " T
) c R b ) )
2928rexbidv 2735 . . . . . . . . . . . . . . 15  |-  ( a  =  T  ->  ( E. b  e.  A  A. c  e.  ( F " a ) c R b  <->  E. b  e.  A  A. c  e.  ( F " T
) c R b ) )
30 breq1 4294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  c  ->  (
z R t  <->  c R
t ) )
3130cbvralv 2946 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. z  e.  ( F " x ) z R t  <->  A. c  e.  ( F " x ) c R t )
32 breq2 4295 . . . . . . . . . . . . . . . . . . . . 21  |-  ( t  =  b  ->  (
c R t  <->  c R
b ) )
3332ralbidv 2734 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  b  ->  ( A. c  e.  ( F " x ) c R t  <->  A. c  e.  ( F " x
) c R b ) )
3431, 33syl5bb 257 . . . . . . . . . . . . . . . . . . 19  |-  ( t  =  b  ->  ( A. z  e.  ( F " x ) z R t  <->  A. c  e.  ( F " x
) c R b ) )
3534cbvrexv 2947 . . . . . . . . . . . . . . . . . 18  |-  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. b  e.  A  A. c  e.  ( F " x ) c R b )
36 imaeq2 5164 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  ( F " x )  =  ( F " a
) )
3736raleqdv 2922 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  ( A. c  e.  ( F " x ) c R b  <->  A. c  e.  ( F " a
) c R b ) )
3837rexbidv 2735 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( E. b  e.  A  A. c  e.  ( F " x ) c R b  <->  E. b  e.  A  A. c  e.  ( F " a
) c R b ) )
3935, 38syl5bb 257 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. b  e.  A  A. c  e.  ( F " a
) c R b ) )
4039cbvrabv 2970 . . . . . . . . . . . . . . . 16  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  =  { a  e.  On  |  E. b  e.  A  A. c  e.  ( F " a ) c R b }
414, 40eqtri 2462 . . . . . . . . . . . . . . 15  |-  T  =  { a  e.  On  |  E. b  e.  A  A. c  e.  ( F " a ) c R b }
4229, 41elrab2 3118 . . . . . . . . . . . . . 14  |-  ( T  e.  T  <->  ( T  e.  On  /\  E. b  e.  A  A. c  e.  ( F " T
) c R b ) )
4342baib 896 . . . . . . . . . . . . 13  |-  ( T  e.  On  ->  ( T  e.  T  <->  E. b  e.  A  A. c  e.  ( F " T
) c R b ) )
4426, 43syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( T  e.  T  <->  E. b  e.  A  A. c  e.  ( F " T ) c R b ) )
4514, 44mtbid 300 . . . . . . . . . . 11  |-  ( ph  ->  -.  E. b  e.  A  A. c  e.  ( F " T
) c R b )
46 ralnex 2724 . . . . . . . . . . 11  |-  ( A. b  e.  A  -.  A. c  e.  ( F
" T ) c R b  <->  -.  E. b  e.  A  A. c  e.  ( F " T
) c R b )
4745, 46sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  A. b  e.  A  -.  A. c  e.  ( F " T ) c R b )
4847r19.21bi 2813 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  A )  ->  -.  A. c  e.  ( F
" T ) c R b )
4919rneqd 5066 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  O  =  ran  ( F  |`  T ) )
50 df-ima 4852 . . . . . . . . . . . . 13  |-  ( F
" T )  =  ran  ( F  |`  T )
5149, 50syl6eqr 2492 . . . . . . . . . . . 12  |-  ( ph  ->  ran  O  =  ( F " T ) )
5251adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  A )  ->  ran  O  =  ( F " T ) )
5352raleqdv 2922 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  A )  ->  ( A. c  e.  ran  O  c R b  <->  A. c  e.  ( F " T
) c R b ) )
54 ffun 5560 . . . . . . . . . . . . . 14  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  Fun  O )
559, 54syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Fun  O )
56 funfn 5446 . . . . . . . . . . . . 13  |-  ( Fun 
O  <->  O  Fn  dom  O )
5755, 56sylib 196 . . . . . . . . . . . 12  |-  ( ph  ->  O  Fn  dom  O
)
5857adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  b  e.  A )  ->  O  Fn  dom  O )
59 breq1 4294 . . . . . . . . . . . 12  |-  ( c  =  ( O `  m )  ->  (
c R b  <->  ( O `  m ) R b ) )
6059ralrn 5845 . . . . . . . . . . 11  |-  ( O  Fn  dom  O  -> 
( A. c  e. 
ran  O  c R
b  <->  A. m  e.  dom  O ( O `  m
) R b ) )
6158, 60syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  b  e.  A )  ->  ( A. c  e.  ran  O  c R b  <->  A. m  e.  dom  O ( O `
 m ) R b ) )
6253, 61bitr3d 255 . . . . . . . . 9  |-  ( (
ph  /\  b  e.  A )  ->  ( A. c  e.  ( F " T ) c R b  <->  A. m  e.  dom  O ( O `
 m ) R b ) )
6348, 62mtbid 300 . . . . . . . 8  |-  ( (
ph  /\  b  e.  A )  ->  -.  A. m  e.  dom  O
( O `  m
) R b )
64 rexnal 2725 . . . . . . . 8  |-  ( E. m  e.  dom  O  -.  ( O `  m
) R b  <->  -.  A. m  e.  dom  O ( O `
 m ) R b )
6563, 64sylibr 212 . . . . . . 7  |-  ( (
ph  /\  b  e.  A )  ->  E. m  e.  dom  O  -.  ( O `  m ) R b )
661, 2, 3, 4, 5, 6, 7ordtypelem7 7737 . . . . . . . . 9  |-  ( ( ( ph  /\  b  e.  A )  /\  m  e.  dom  O )  -> 
( ( O `  m ) R b  \/  b  e.  ran  O ) )
6766ord 377 . . . . . . . 8  |-  ( ( ( ph  /\  b  e.  A )  /\  m  e.  dom  O )  -> 
( -.  ( O `
 m ) R b  ->  b  e.  ran  O ) )
6867rexlimdva 2840 . . . . . . 7  |-  ( (
ph  /\  b  e.  A )  ->  ( E. m  e.  dom  O  -.  ( O `  m ) R b  ->  b  e.  ran  O ) )
6965, 68mpd 15 . . . . . 6  |-  ( (
ph  /\  b  e.  A )  ->  b  e.  ran  O )
7069ex 434 . . . . 5  |-  ( ph  ->  ( b  e.  A  ->  b  e.  ran  O
) )
7170ssrdv 3361 . . . 4  |-  ( ph  ->  A  C_  ran  O )
7211, 71eqssd 3372 . . 3  |-  ( ph  ->  ran  O  =  A )
73 isoeq5 6013 . . 3  |-  ( ran 
O  =  A  -> 
( O  Isom  _E  ,  R  ( dom  O ,  ran  O )  <->  O  Isom  _E  ,  R  ( dom 
O ,  A ) ) )
7472, 73syl 16 . 2  |-  ( ph  ->  ( O  Isom  _E  ,  R  ( dom  O ,  ran  O )  <->  O  Isom  _E  ,  R  ( dom 
O ,  A ) ) )
758, 74mpbid 210 1  |-  ( ph  ->  O  Isom  _E  ,  R  ( dom  O ,  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715   {crab 2718   _Vcvv 2971    i^i cin 3326    C_ wss 3327   class class class wbr 4291    e. cmpt 4349    _E cep 4629   Se wse 4676    We wwe 4677   Ord word 4717   Oncon0 4718   Lim wlim 4719   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842   Fun wfun 5411    Fn wfn 5412   -->wf 5413   ` cfv 5417    Isom wiso 5418   iota_crio 6050  recscrecs 6830  OrdIsocoi 7722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-recs 6831  df-oi 7723
This theorem is referenced by:  ordtypelem10  7740  ordtype2  7747
  Copyright terms: Public domain W3C validator