MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem7 Unicode version

Theorem ordtypelem7 7449
Description: Lemma for ordtype 7457. 
ran  O is an initial segment of  A under the well-order  R. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem7  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( ( O `  M ) R N  \/  N  e.  ran  O ) )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, M    j, N, u, w    R, h, j, t, u, v, w, x, z    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    N( x, z, v, t, h)    O( z, w, h, j)

Proof of Theorem ordtypelem7
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3290 . . . . . 6  |-  ( N  e.  ( A  \  ran  O )  <->  ( N  e.  A  /\  -.  N  e.  ran  O ) )
2 ordtypelem.1 . . . . . . . . . . . 12  |-  F  = recs ( G )
3 ordtypelem.2 . . . . . . . . . . . 12  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
4 ordtypelem.3 . . . . . . . . . . . 12  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
5 ordtypelem.5 . . . . . . . . . . . 12  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
6 ordtypelem.6 . . . . . . . . . . . 12  |-  O  = OrdIso
( R ,  A
)
7 ordtypelem.7 . . . . . . . . . . . 12  |-  ( ph  ->  R  We  A )
8 ordtypelem.8 . . . . . . . . . . . 12  |-  ( ph  ->  R Se  A )
92, 3, 4, 5, 6, 7, 8ordtypelem4 7446 . . . . . . . . . . 11  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
109adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  O : ( T  i^i  dom 
F ) --> A )
11 fdm 5554 . . . . . . . . . 10  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  dom  O  =  ( T  i^i  dom  F )
)
1210, 11syl 16 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  dom  O  =  ( T  i^i  dom 
F ) )
13 inss1 3521 . . . . . . . . . 10  |-  ( T  i^i  dom  F )  C_  T
142, 3, 4, 5, 6, 7, 8ordtypelem2 7444 . . . . . . . . . . . 12  |-  ( ph  ->  Ord  T )
1514adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  Ord  T )
16 ordsson 4729 . . . . . . . . . . 11  |-  ( Ord 
T  ->  T  C_  On )
1715, 16syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  T  C_  On )
1813, 17syl5ss 3319 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( T  i^i  dom  F )  C_  On )
1912, 18eqsstrd 3342 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  dom  O 
C_  On )
2019sseld 3307 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  ->  M  e.  On )
)
21 eleq1 2464 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a  e.  dom  O  <->  b  e.  dom  O ) )
22 fveq2 5687 . . . . . . . . . . . 12  |-  ( a  =  b  ->  ( O `  a )  =  ( O `  b ) )
2322breq1d 4182 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
( O `  a
) R N  <->  ( O `  b ) R N ) )
2421, 23imbi12d 312 . . . . . . . . . 10  |-  ( a  =  b  ->  (
( a  e.  dom  O  ->  ( O `  a ) R N )  <->  ( b  e. 
dom  O  ->  ( O `
 b ) R N ) ) )
2524imbi2d 308 . . . . . . . . 9  |-  ( a  =  b  ->  (
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) )  <->  ( ( ph  /\  N  e.  ( A  \  ran  O
) )  ->  (
b  e.  dom  O  ->  ( O `  b
) R N ) ) ) )
26 eleq1 2464 . . . . . . . . . . 11  |-  ( a  =  M  ->  (
a  e.  dom  O  <->  M  e.  dom  O ) )
27 fveq2 5687 . . . . . . . . . . . 12  |-  ( a  =  M  ->  ( O `  a )  =  ( O `  M ) )
2827breq1d 4182 . . . . . . . . . . 11  |-  ( a  =  M  ->  (
( O `  a
) R N  <->  ( O `  M ) R N ) )
2926, 28imbi12d 312 . . . . . . . . . 10  |-  ( a  =  M  ->  (
( a  e.  dom  O  ->  ( O `  a ) R N )  <->  ( M  e. 
dom  O  ->  ( O `
 M ) R N ) ) )
3029imbi2d 308 . . . . . . . . 9  |-  ( a  =  M  ->  (
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) )  <->  ( ( ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  -> 
( O `  M
) R N ) ) ) )
31 r19.21v 2753 . . . . . . . . . 10  |-  ( A. b  e.  a  (
( ph  /\  N  e.  ( A  \  ran  O ) )  ->  (
b  e.  dom  O  ->  ( O `  b
) R N ) )  <->  ( ( ph  /\  N  e.  ( A 
\  ran  O )
)  ->  A. b  e.  a  ( b  e.  dom  O  ->  ( O `  b ) R N ) ) )
322tfr1a 6614 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Fun 
F  /\  Lim  dom  F
)
3332simpri 449 . . . . . . . . . . . . . . . . . . . . . 22  |-  Lim  dom  F
34 limord 4600 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Lim 
dom  F  ->  Ord  dom  F )
3533, 34ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  Ord  dom  F
36 ordin 4571 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  T  /\  Ord  dom 
F )  ->  Ord  ( T  i^i  dom  F
) )
3715, 35, 36sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  Ord  ( T  i^i  dom  F
) )
38 ordeq 4548 . . . . . . . . . . . . . . . . . . . . 21  |-  ( dom 
O  =  ( T  i^i  dom  F )  ->  ( Ord  dom  O  <->  Ord  ( T  i^i  dom  F ) ) )
3912, 38syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( Ord  dom  O  <->  Ord  ( T  i^i  dom  F )
) )
4037, 39mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  Ord  dom 
O )
41 ordelss 4557 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Ord  dom  O  /\  a  e.  dom  O )  ->  a  C_  dom  O )
4240, 41sylan 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
a  C_  dom  O )
4342sselda 3308 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  /\  b  e.  a )  ->  b  e.  dom  O )
44 pm5.5 327 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  dom  O  -> 
( ( b  e. 
dom  O  ->  ( O `
 b ) R N )  <->  ( O `  b ) R N ) )
4543, 44syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  /\  b  e.  a )  ->  (
( b  e.  dom  O  ->  ( O `  b ) R N )  <->  ( O `  b ) R N ) )
4645ralbidva 2682 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
( A. b  e.  a  ( b  e. 
dom  O  ->  ( O `
 b ) R N )  <->  A. b  e.  a  ( O `  b ) R N ) )
47 eldifn 3430 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( A  \  ran  O )  ->  -.  N  e.  ran  O )
4847ad2antlr 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  -.  N  e.  ran  O )
499ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  O :
( T  i^i  dom  F ) --> A )
50 ffn 5550 . . . . . . . . . . . . . . . . . . . . 21  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  O  Fn  ( T  i^i  dom  F ) )
5149, 50syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  O  Fn  ( T  i^i  dom  F
) )
52 simprl 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  e.  dom  O )
5349, 11syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  dom  O  =  ( T  i^i  dom  F ) )
5452, 53eleqtrd 2480 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  e.  ( T  i^i  dom  F
) )
55 fnfvelrn 5826 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O  Fn  ( T  i^i  dom  F )  /\  a  e.  ( T  i^i  dom  F )
)  ->  ( O `  a )  e.  ran  O )
5651, 54, 55syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  e.  ran  O )
57 eleq1 2464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  a )  =  N  ->  (
( O `  a
)  e.  ran  O  <->  N  e.  ran  O ) )
5856, 57syl5ibcom 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( O `  a )  =  N  ->  N  e. 
ran  O ) )
5948, 58mtod 170 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  -.  ( O `  a )  =  N )
60 eldifi 3429 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( A  \  ran  O )  ->  N  e.  A )
6160ad2antlr 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  N  e.  A )
62 simprr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. b  e.  a  ( O `  b ) R N )
632, 3, 4, 5, 6, 7, 8ordtypelem1 7443 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  O  =  ( F  |`  T ) )
6463ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  O  =  ( F  |`  T ) )
6542adantrr 698 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  dom  O )
6665, 53sseqtrd 3344 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  ( T  i^i  dom  F
) )
6766, 13syl6ss 3320 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  T )
68 fveq1 5686 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( O  =  ( F  |`  T )  ->  ( O `  b )  =  ( ( F  |`  T ) `  b
) )
69 ssel2 3303 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  C_  T  /\  b  e.  a )  ->  b  e.  T )
70 fvres 5704 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( b  e.  T  ->  (
( F  |`  T ) `
 b )  =  ( F `  b
) )
7169, 70syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( a  C_  T  /\  b  e.  a )  ->  ( ( F  |`  T ) `  b
)  =  ( F `
 b ) )
7268, 71sylan9eq 2456 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( O  =  ( F  |`  T )  /\  (
a  C_  T  /\  b  e.  a )
)  ->  ( O `  b )  =  ( F `  b ) )
7372anassrs 630 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( O  =  ( F  |`  T )  /\  a  C_  T )  /\  b  e.  a )  ->  ( O `  b )  =  ( F `  b ) )
7473breq1d 4182 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( O  =  ( F  |`  T )  /\  a  C_  T )  /\  b  e.  a )  ->  ( ( O `  b ) R N  <->  ( F `  b ) R N ) )
7574ralbidva 2682 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( O  =  ( F  |`  T )  /\  a  C_  T )  ->  ( A. b  e.  a 
( O `  b
) R N  <->  A. b  e.  a  ( F `  b ) R N ) )
7664, 67, 75syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( A. b  e.  a  ( O `  b ) R N  <->  A. b  e.  a  ( F `  b
) R N ) )
7762, 76mpbid 202 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. b  e.  a  ( F `  b ) R N )
7832simpli 445 . . . . . . . . . . . . . . . . . . . . . 22  |-  Fun  F
79 funfn 5441 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Fun 
F  <->  F  Fn  dom  F )
8078, 79mpbi 200 . . . . . . . . . . . . . . . . . . . . 21  |-  F  Fn  dom  F
81 inss2 3522 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( T  i^i  dom  F )  C_ 
dom  F
8266, 81syl6ss 3320 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  dom  F )
83 breq1 4175 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  ( F `  b )  ->  (
j R N  <->  ( F `  b ) R N ) )
8483ralima 5937 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  Fn  dom  F  /\  a  C_  dom  F
)  ->  ( A. j  e.  ( F " a ) j R N  <->  A. b  e.  a  ( F `  b
) R N ) )
8580, 82, 84sylancr 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( A. j  e.  ( F " a ) j R N  <->  A. b  e.  a  ( F `  b
) R N ) )
8677, 85mpbird 224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. j  e.  ( F " a
) j R N )
87 breq2 4176 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  N  ->  (
j R w  <->  j R N ) )
8887ralbidv 2686 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  N  ->  ( A. j  e.  ( F " a ) j R w  <->  A. j  e.  ( F " a
) j R N ) )
8988elrab 3052 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  <->  ( N  e.  A  /\  A. j  e.  ( F " a
) j R N ) )
9061, 86, 89sylanbrc 646 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  N  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w } )
9164fveq1d 5689 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  =  ( ( F  |`  T ) `
 a ) )
9213, 54sseldi 3306 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  e.  T )
93 fvres 5704 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  e.  T  ->  (
( F  |`  T ) `
 a )  =  ( F `  a
) )
9492, 93syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( F  |`  T ) `  a )  =  ( F `  a ) )
9591, 94eqtrd 2436 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  =  ( F `  a ) )
96 simpll 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ph )
972, 3, 4, 5, 6, 7, 8ordtypelem3 7445 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  ( F `  a )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
9896, 54, 97syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( F `  a )  e.  {
v  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
9995, 98eqeltrd 2478 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  e.  {
v  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
100 breq2 4176 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( O `  a )  ->  (
u R v  <->  u R
( O `  a
) ) )
101100notbid 286 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( O `  a )  ->  ( -.  u R v  <->  -.  u R ( O `  a ) ) )
102101ralbidv 2686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( O `  a )  ->  ( A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `
 a ) ) )
103102elrab 3052 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O `  a )  e.  { v  e. 
{ w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v }  <->  ( ( O `  a )  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  /\  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `  a ) ) )
104103simprbi 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  a )  e.  { v  e. 
{ w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v }  ->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `  a ) )
10599, 104syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `
 a ) )
106 breq1 4175 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  N  ->  (
u R ( O `
 a )  <->  N R
( O `  a
) ) )
107106notbid 286 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  N  ->  ( -.  u R ( O `
 a )  <->  -.  N R ( O `  a ) ) )
108107rspcv 3008 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  ->  ( A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `  a )  ->  -.  N R ( O `  a ) ) )
10990, 105, 108sylc 58 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  -.  N R ( O `  a ) )
110 weso 4533 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  We  A  ->  R  Or  A )
1117, 110syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  R  Or  A )
112111ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  R  Or  A )
11349, 54ffvelrnd 5830 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  e.  A
)
114 sotric 4489 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  Or  A  /\  ( ( O `  a )  e.  A  /\  N  e.  A
) )  ->  (
( O `  a
) R N  <->  -.  (
( O `  a
)  =  N  \/  N R ( O `  a ) ) ) )
115112, 113, 61, 114syl12anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( O `  a ) R N  <->  -.  ( ( O `  a )  =  N  \/  N R ( O `  a ) ) ) )
116 ioran 477 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( ( O `  a )  =  N  \/  N R ( O `  a ) )  <->  ( -.  ( O `  a )  =  N  /\  -.  N R ( O `  a ) ) )
117115, 116syl6bb 253 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( O `  a ) R N  <->  ( -.  ( O `  a )  =  N  /\  -.  N R ( O `  a ) ) ) )
11859, 109, 117mpbir2and 889 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a ) R N )
119118expr 599 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
( A. b  e.  a  ( O `  b ) R N  ->  ( O `  a ) R N ) )
12046, 119sylbid 207 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
( A. b  e.  a  ( b  e. 
dom  O  ->  ( O `
 b ) R N )  ->  ( O `  a ) R N ) )
121120ex 424 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  (
a  e.  dom  O  ->  ( A. b  e.  a  ( b  e. 
dom  O  ->  ( O `
 b ) R N )  ->  ( O `  a ) R N ) ) )
122121com23 74 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( A. b  e.  a 
( b  e.  dom  O  ->  ( O `  b ) R N )  ->  ( a  e.  dom  O  ->  ( O `  a ) R N ) ) )
123122a2i 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  A. b  e.  a  ( b  e.  dom  O  ->  ( O `  b ) R N ) )  -> 
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) ) )
124123a1i 11 . . . . . . . . . 10  |-  ( a  e.  On  ->  (
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  A. b  e.  a  ( b  e.  dom  O  ->  ( O `  b ) R N ) )  ->  (
( ph  /\  N  e.  ( A  \  ran  O ) )  ->  (
a  e.  dom  O  ->  ( O `  a
) R N ) ) ) )
12531, 124syl5bi 209 . . . . . . . . 9  |-  ( a  e.  On  ->  ( A. b  e.  a 
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( b  e. 
dom  O  ->  ( O `
 b ) R N ) )  -> 
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) ) ) )
12625, 30, 125tfis3 4796 . . . . . . . 8  |-  ( M  e.  On  ->  (
( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( M  e.  dom  O  -> 
( O `  M
) R N ) ) )
127126com3l 77 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  -> 
( M  e.  On  ->  ( O `  M
) R N ) ) )
12820, 127mpdd 38 . . . . . 6  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  -> 
( O `  M
) R N ) )
1291, 128sylan2br 463 . . . . 5  |-  ( (
ph  /\  ( N  e.  A  /\  -.  N  e.  ran  O ) )  ->  ( M  e. 
dom  O  ->  ( O `
 M ) R N ) )
130129anassrs 630 . . . 4  |-  ( ( ( ph  /\  N  e.  A )  /\  -.  N  e.  ran  O )  ->  ( M  e. 
dom  O  ->  ( O `
 M ) R N ) )
131130impancom 428 . . 3  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( -.  N  e. 
ran  O  ->  ( O `
 M ) R N ) )
132131orrd 368 . 2  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( N  e.  ran  O  \/  ( O `  M ) R N ) )
133132orcomd 378 1  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( ( O `  M ) R N  \/  N  e.  ran  O ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280   class class class wbr 4172    e. cmpt 4226    Or wor 4462   Se wse 4499    We wwe 4500   Ord word 4540   Oncon0 4541   Lim wlim 4542   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413   iota_crio 6501  recscrecs 6591  OrdIsocoi 7434
This theorem is referenced by:  ordtypelem9  7451  ordtypelem10  7452  oiiniseg  7458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6508  df-recs 6592  df-oi 7435
  Copyright terms: Public domain W3C validator