MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem6 Structured version   Unicode version

Theorem ordtypelem6 8048
Description: Lemma for ordtype 8057. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem6  |-  ( (
ph  /\  M  e.  dom  O )  ->  ( N  e.  M  ->  ( O `  N ) R ( O `  M ) ) )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, M    j, N, u, w    R, h, j, t, u, v, w, x, z    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    N( x, z, v, t, h)    O( z, w, h, j)

Proof of Theorem ordtypelem6
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simprr 764 . . . 4  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  ->  N  e.  M )
2 ssrab2 3546 . . . . . . . 8  |-  { v  e.  { w  e.  A  |  A. j  e.  ( F " M
) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } 
C_  { w  e.  A  |  A. j  e.  ( F " M
) j R w }
3 simpr 462 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  dom  O )  ->  M  e.  dom  O )
4 ordtypelem.1 . . . . . . . . . . . . 13  |-  F  = recs ( G )
5 ordtypelem.2 . . . . . . . . . . . . 13  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
6 ordtypelem.3 . . . . . . . . . . . . 13  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
7 ordtypelem.5 . . . . . . . . . . . . 13  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
8 ordtypelem.6 . . . . . . . . . . . . 13  |-  O  = OrdIso
( R ,  A
)
9 ordtypelem.7 . . . . . . . . . . . . 13  |-  ( ph  ->  R  We  A )
10 ordtypelem.8 . . . . . . . . . . . . 13  |-  ( ph  ->  R Se  A )
114, 5, 6, 7, 8, 9, 10ordtypelem4 8046 . . . . . . . . . . . 12  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
12 fdm 5750 . . . . . . . . . . . 12  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  dom  O  =  ( T  i^i  dom  F )
)
1311, 12syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  O  =  ( T  i^i  dom  F
) )
1413adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  M  e.  dom  O )  ->  dom  O  =  ( T  i^i  dom 
F ) )
153, 14eleqtrd 2509 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  dom  O )  ->  M  e.  ( T  i^i  dom  F ) )
164, 5, 6, 7, 8, 9, 10ordtypelem3 8045 . . . . . . . . 9  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
1715, 16syldan 472 . . . . . . . 8  |-  ( (
ph  /\  M  e.  dom  O )  ->  ( F `  M )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
182, 17sseldi 3462 . . . . . . 7  |-  ( (
ph  /\  M  e.  dom  O )  ->  ( F `  M )  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }
)
19 breq2 4427 . . . . . . . . . 10  |-  ( w  =  ( F `  M )  ->  (
j R w  <->  j R
( F `  M
) ) )
2019ralbidv 2861 . . . . . . . . 9  |-  ( w  =  ( F `  M )  ->  ( A. j  e.  ( F " M ) j R w  <->  A. j  e.  ( F " M
) j R ( F `  M ) ) )
2120elrab 3228 . . . . . . . 8  |-  ( ( F `  M )  e.  { w  e.  A  |  A. j  e.  ( F " M
) j R w }  <->  ( ( F `
 M )  e.  A  /\  A. j  e.  ( F " M
) j R ( F `  M ) ) )
2221simprbi 465 . . . . . . 7  |-  ( ( F `  M )  e.  { w  e.  A  |  A. j  e.  ( F " M
) j R w }  ->  A. j  e.  ( F " M
) j R ( F `  M ) )
2318, 22syl 17 . . . . . 6  |-  ( (
ph  /\  M  e.  dom  O )  ->  A. j  e.  ( F " M
) j R ( F `  M ) )
244tfr1a 7124 . . . . . . . . 9  |-  ( Fun 
F  /\  Lim  dom  F
)
2524simpli 459 . . . . . . . 8  |-  Fun  F
26 funfn 5630 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
2725, 26mpbi 211 . . . . . . 7  |-  F  Fn  dom  F
2824simpri 463 . . . . . . . . 9  |-  Lim  dom  F
29 limord 5501 . . . . . . . . 9  |-  ( Lim 
dom  F  ->  Ord  dom  F )
3028, 29ax-mp 5 . . . . . . . 8  |-  Ord  dom  F
31 inss2 3683 . . . . . . . . . 10  |-  ( T  i^i  dom  F )  C_ 
dom  F
3213, 31syl6eqss 3514 . . . . . . . . 9  |-  ( ph  ->  dom  O  C_  dom  F )
3332sselda 3464 . . . . . . . 8  |-  ( (
ph  /\  M  e.  dom  O )  ->  M  e.  dom  F )
34 ordelss 5458 . . . . . . . 8  |-  ( ( Ord  dom  F  /\  M  e.  dom  F )  ->  M  C_  dom  F )
3530, 33, 34sylancr 667 . . . . . . 7  |-  ( (
ph  /\  M  e.  dom  O )  ->  M  C_ 
dom  F )
36 breq1 4426 . . . . . . . 8  |-  ( j  =  ( F `  a )  ->  (
j R ( F `
 M )  <->  ( F `  a ) R ( F `  M ) ) )
3736ralima 6161 . . . . . . 7  |-  ( ( F  Fn  dom  F  /\  M  C_  dom  F
)  ->  ( A. j  e.  ( F " M ) j R ( F `  M
)  <->  A. a  e.  M  ( F `  a ) R ( F `  M ) ) )
3827, 35, 37sylancr 667 . . . . . 6  |-  ( (
ph  /\  M  e.  dom  O )  ->  ( A. j  e.  ( F " M ) j R ( F `  M )  <->  A. a  e.  M  ( F `  a ) R ( F `  M ) ) )
3923, 38mpbid 213 . . . . 5  |-  ( (
ph  /\  M  e.  dom  O )  ->  A. a  e.  M  ( F `  a ) R ( F `  M ) )
4039adantrr 721 . . . 4  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  ->  A. a  e.  M  ( F `  a ) R ( F `  M ) )
41 fveq2 5882 . . . . . 6  |-  ( a  =  N  ->  ( F `  a )  =  ( F `  N ) )
4241breq1d 4433 . . . . 5  |-  ( a  =  N  ->  (
( F `  a
) R ( F `
 M )  <->  ( F `  N ) R ( F `  M ) ) )
4342rspcv 3178 . . . 4  |-  ( N  e.  M  ->  ( A. a  e.  M  ( F `  a ) R ( F `  M )  ->  ( F `  N ) R ( F `  M ) ) )
441, 40, 43sylc 62 . . 3  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( F `  N
) R ( F `
 M ) )
454, 5, 6, 7, 8, 9, 10ordtypelem1 8043 . . . . . 6  |-  ( ph  ->  O  =  ( F  |`  T ) )
4645adantr 466 . . . . 5  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  ->  O  =  ( F  |`  T ) )
4746fveq1d 5884 . . . 4  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( O `  N
)  =  ( ( F  |`  T ) `  N ) )
484, 5, 6, 7, 8, 9, 10ordtypelem2 8044 . . . . . . . 8  |-  ( ph  ->  Ord  T )
4948adantr 466 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  ->  Ord  T )
50 inss1 3682 . . . . . . . . . 10  |-  ( T  i^i  dom  F )  C_  T
5113, 50syl6eqss 3514 . . . . . . . . 9  |-  ( ph  ->  dom  O  C_  T
)
5251sselda 3464 . . . . . . . 8  |-  ( (
ph  /\  M  e.  dom  O )  ->  M  e.  T )
5352adantrr 721 . . . . . . 7  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  ->  M  e.  T )
54 ordelss 5458 . . . . . . 7  |-  ( ( Ord  T  /\  M  e.  T )  ->  M  C_  T )
5549, 53, 54syl2anc 665 . . . . . 6  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  ->  M  C_  T )
5655, 1sseldd 3465 . . . . 5  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  ->  N  e.  T )
57 fvres 5896 . . . . 5  |-  ( N  e.  T  ->  (
( F  |`  T ) `
 N )  =  ( F `  N
) )
5856, 57syl 17 . . . 4  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( ( F  |`  T ) `  N
)  =  ( F `
 N ) )
5947, 58eqtrd 2463 . . 3  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( O `  N
)  =  ( F `
 N ) )
6046fveq1d 5884 . . . 4  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( O `  M
)  =  ( ( F  |`  T ) `  M ) )
61 fvres 5896 . . . . 5  |-  ( M  e.  T  ->  (
( F  |`  T ) `
 M )  =  ( F `  M
) )
6253, 61syl 17 . . . 4  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( ( F  |`  T ) `  M
)  =  ( F `
 M ) )
6360, 62eqtrd 2463 . . 3  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( O `  M
)  =  ( F `
 M ) )
6444, 59, 633brtr4d 4454 . 2  |-  ( (
ph  /\  ( M  e.  dom  O  /\  N  e.  M ) )  -> 
( O `  N
) R ( O `
 M ) )
6564expr 618 1  |-  ( (
ph  /\  M  e.  dom  O )  ->  ( N  e.  M  ->  ( O `  N ) R ( O `  M ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2771   E.wrex 2772   {crab 2775   _Vcvv 3080    i^i cin 3435    C_ wss 3436   class class class wbr 4423    |-> cmpt 4482   Se wse 4810    We wwe 4811   dom cdm 4853   ran crn 4854    |` cres 4855   "cima 4856   Ord word 5441   Oncon0 5442   Lim wlim 5443   Fun wfun 5595    Fn wfn 5596   -->wf 5597   ` cfv 5601   iota_crio 6267  recscrecs 7101  OrdIsocoi 8034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6268  df-wrecs 7040  df-recs 7102  df-oi 8035
This theorem is referenced by:  ordtypelem8  8050
  Copyright terms: Public domain W3C validator