MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem5 Structured version   Unicode version

Theorem ordtypelem5 7945
Description: Lemma for ordtype 7955. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem5  |-  ( ph  ->  ( Ord  dom  O  /\  O : dom  O --> A ) )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem5
StepHypRef Expression
1 ordtypelem.1 . . . . 5  |-  F  = recs ( G )
2 ordtypelem.2 . . . . 5  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
3 ordtypelem.3 . . . . 5  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
4 ordtypelem.5 . . . . 5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
5 ordtypelem.6 . . . . 5  |-  O  = OrdIso
( R ,  A
)
6 ordtypelem.7 . . . . 5  |-  ( ph  ->  R  We  A )
7 ordtypelem.8 . . . . 5  |-  ( ph  ->  R Se  A )
81, 2, 3, 4, 5, 6, 7ordtypelem2 7942 . . . 4  |-  ( ph  ->  Ord  T )
91tfr1a 7061 . . . . . 6  |-  ( Fun 
F  /\  Lim  dom  F
)
109simpri 462 . . . . 5  |-  Lim  dom  F
11 limord 4923 . . . . 5  |-  ( Lim 
dom  F  ->  Ord  dom  F )
1210, 11ax-mp 5 . . . 4  |-  Ord  dom  F
13 ordin 4894 . . . 4  |-  ( ( Ord  T  /\  Ord  dom 
F )  ->  Ord  ( T  i^i  dom  F
) )
148, 12, 13sylancl 662 . . 3  |-  ( ph  ->  Ord  ( T  i^i  dom 
F ) )
151, 2, 3, 4, 5, 6, 7ordtypelem4 7944 . . . . 5  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
16 fdm 5721 . . . . 5  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  dom  O  =  ( T  i^i  dom  F )
)
1715, 16syl 16 . . . 4  |-  ( ph  ->  dom  O  =  ( T  i^i  dom  F
) )
18 ordeq 4871 . . . 4  |-  ( dom 
O  =  ( T  i^i  dom  F )  ->  ( Ord  dom  O  <->  Ord  ( T  i^i  dom  F ) ) )
1917, 18syl 16 . . 3  |-  ( ph  ->  ( Ord  dom  O  <->  Ord  ( T  i^i  dom  F ) ) )
2014, 19mpbird 232 . 2  |-  ( ph  ->  Ord  dom  O )
2117feq2d 5704 . . 3  |-  ( ph  ->  ( O : dom  O --> A  <->  O : ( T  i^i  dom  F ) --> A ) )
2215, 21mpbird 232 . 2  |-  ( ph  ->  O : dom  O --> A )
2320, 22jca 532 1  |-  ( ph  ->  ( Ord  dom  O  /\  O : dom  O --> A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381   A.wral 2791   E.wrex 2792   {crab 2795   _Vcvv 3093    i^i cin 3457   class class class wbr 4433    |-> cmpt 4491   Se wse 4822    We wwe 4823   Ord word 4863   Oncon0 4864   Lim wlim 4865   dom cdm 4985   ran crn 4986   "cima 4988   Fun wfun 5568   -->wf 5570   iota_crio 6237  recscrecs 7039  OrdIsocoi 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-recs 7040  df-oi 7933
This theorem is referenced by:  oicl  7952  oif  7953
  Copyright terms: Public domain W3C validator