MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem4 Structured version   Unicode version

Theorem ordtypelem4 7964
Description: Lemma for ordtype 7975. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem4  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem4
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . . . 8  |-  F  = recs ( G )
21tfr1a 7081 . . . . . . 7  |-  ( Fun 
F  /\  Lim  dom  F
)
32simpli 458 . . . . . 6  |-  Fun  F
4 funres 5633 . . . . . 6  |-  ( Fun 
F  ->  Fun  ( F  |`  T ) )
53, 4mp1i 12 . . . . 5  |-  ( ph  ->  Fun  ( F  |`  T ) )
6 funfn 5623 . . . . 5  |-  ( Fun  ( F  |`  T )  <-> 
( F  |`  T )  Fn  dom  ( F  |`  T ) )
75, 6sylib 196 . . . 4  |-  ( ph  ->  ( F  |`  T )  Fn  dom  ( F  |`  T ) )
8 dmres 5304 . . . . 5  |-  dom  ( F  |`  T )  =  ( T  i^i  dom  F )
98fneq2i 5682 . . . 4  |-  ( ( F  |`  T )  Fn  dom  ( F  |`  T )  <->  ( F  |`  T )  Fn  ( T  i^i  dom  F )
)
107, 9sylib 196 . . 3  |-  ( ph  ->  ( F  |`  T )  Fn  ( T  i^i  dom 
F ) )
11 inss1 3714 . . . . . . 7  |-  ( T  i^i  dom  F )  C_  T
12 simpr 461 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  a  e.  ( T  i^i  dom  F ) )
1311, 12sseldi 3497 . . . . . 6  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  a  e.  T )
14 fvres 5886 . . . . . 6  |-  ( a  e.  T  ->  (
( F  |`  T ) `
 a )  =  ( F `  a
) )
1513, 14syl 16 . . . . 5  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  (
( F  |`  T ) `
 a )  =  ( F `  a
) )
16 ssrab2 3581 . . . . . . 7  |-  { v  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } 
C_  { w  e.  A  |  A. j  e.  ( F " a
) j R w }
17 ssrab2 3581 . . . . . . 7  |-  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  C_  A
1816, 17sstri 3508 . . . . . 6  |-  { v  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } 
C_  A
19 ordtypelem.2 . . . . . . 7  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
20 ordtypelem.3 . . . . . . 7  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
21 ordtypelem.5 . . . . . . 7  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
22 ordtypelem.6 . . . . . . 7  |-  O  = OrdIso
( R ,  A
)
23 ordtypelem.7 . . . . . . 7  |-  ( ph  ->  R  We  A )
24 ordtypelem.8 . . . . . . 7  |-  ( ph  ->  R Se  A )
251, 19, 20, 21, 22, 23, 24ordtypelem3 7963 . . . . . 6  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  ( F `  a )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
2618, 25sseldi 3497 . . . . 5  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  ( F `  a )  e.  A )
2715, 26eqeltrd 2545 . . . 4  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  (
( F  |`  T ) `
 a )  e.  A )
2827ralrimiva 2871 . . 3  |-  ( ph  ->  A. a  e.  ( T  i^i  dom  F
) ( ( F  |`  T ) `  a
)  e.  A )
29 ffnfv 6058 . . 3  |-  ( ( F  |`  T ) : ( T  i^i  dom 
F ) --> A  <->  ( ( F  |`  T )  Fn  ( T  i^i  dom  F )  /\  A. a  e.  ( T  i^i  dom  F ) ( ( F  |`  T ) `  a
)  e.  A ) )
3010, 28, 29sylanbrc 664 . 2  |-  ( ph  ->  ( F  |`  T ) : ( T  i^i  dom 
F ) --> A )
311, 19, 20, 21, 22, 23, 24ordtypelem1 7961 . . 3  |-  ( ph  ->  O  =  ( F  |`  T ) )
3231feq1d 5723 . 2  |-  ( ph  ->  ( O : ( T  i^i  dom  F
) --> A  <->  ( F  |`  T ) : ( T  i^i  dom  F
) --> A ) )
3330, 32mpbird 232 1  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    i^i cin 3470   class class class wbr 4456    |-> cmpt 4515   Se wse 4845    We wwe 4846   Oncon0 4887   Lim wlim 4888   dom cdm 5008   ran crn 5009    |` cres 5010   "cima 5011   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594   iota_crio 6257  recscrecs 7059  OrdIsocoi 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-recs 7060  df-oi 7953
This theorem is referenced by:  ordtypelem5  7965  ordtypelem6  7966  ordtypelem7  7967  ordtypelem8  7968  ordtypelem9  7969  ordtypelem10  7970
  Copyright terms: Public domain W3C validator