MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Unicode version

Theorem ordtypelem2 7947
Description: Lemma for ordtype 7960. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C  A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem2  |-  ( ph  ->  Ord  T )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
2 ssrab2 3570 . . . . . . . . . 10  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  C_  On
31, 2eqsstri 3519 . . . . . . . . 9  |-  T  C_  On
43a1i 11 . . . . . . . 8  |-  ( ph  ->  T  C_  On )
54sselda 3489 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  a  e.  On )
6 onss 6611 . . . . . . 7  |-  ( a  e.  On  ->  a  C_  On )
75, 6syl 16 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  On )
8 eloni 4878 . . . . . . . 8  |-  ( a  e.  On  ->  Ord  a )
95, 8syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  Ord  a )
10 imaeq2 5323 . . . . . . . . . . . 12  |-  ( x  =  a  ->  ( F " x )  =  ( F " a
) )
1110raleqdv 3046 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( A. z  e.  ( F " x ) z R t  <->  A. z  e.  ( F " a
) z R t ) )
1211rexbidv 2954 . . . . . . . . . 10  |-  ( x  =  a  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1312, 1elrab2 3245 . . . . . . . . 9  |-  ( a  e.  T  <->  ( a  e.  On  /\  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1413simprbi 464 . . . . . . . 8  |-  ( a  e.  T  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
1514adantl 466 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
16 ordelss 4884 . . . . . . . . 9  |-  ( ( Ord  a  /\  x  e.  a )  ->  x  C_  a )
17 imass2 5362 . . . . . . . . 9  |-  ( x 
C_  a  ->  ( F " x )  C_  ( F " a ) )
18 ssralv 3549 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( A. z  e.  ( F " a ) z R t  ->  A. z  e.  ( F " x
) z R t ) )
1918reximdv 2917 . . . . . . . . 9  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2016, 17, 193syl 20 . . . . . . . 8  |-  ( ( Ord  a  /\  x  e.  a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2120ralrimdva 2861 . . . . . . 7  |-  ( Ord  a  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
229, 15, 21sylc 60 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t )
23 ssrab 3563 . . . . . 6  |-  ( a 
C_  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  <->  ( a  C_  On  /\  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
247, 22, 23sylanbrc 664 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  a  C_ 
{ x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } )
2524, 1syl6sseqr 3536 . . . 4  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  T )
2625ralrimiva 2857 . . 3  |-  ( ph  ->  A. a  e.  T  a  C_  T )
27 dftr3 4534 . . 3  |-  ( Tr  T  <->  A. a  e.  T  a  C_  T )
2826, 27sylibr 212 . 2  |-  ( ph  ->  Tr  T )
29 ordon 6603 . . 3  |-  Ord  On
30 trssord 4885 . . 3  |-  ( ( Tr  T  /\  T  C_  On  /\  Ord  On )  ->  Ord  T )
313, 29, 30mp3an23 1317 . 2  |-  ( Tr  T  ->  Ord  T )
3228, 31syl 16 1  |-  ( ph  ->  Ord  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794   {crab 2797   _Vcvv 3095    C_ wss 3461   class class class wbr 4437    |-> cmpt 4495   Tr wtr 4530   Se wse 4826    We wwe 4827   Ord word 4867   Oncon0 4868   ran crn 4990   "cima 4992   iota_crio 6241  recscrecs 7043  OrdIsocoi 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-xp 4995  df-cnv 4997  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002
This theorem is referenced by:  ordtypelem5  7950  ordtypelem6  7951  ordtypelem7  7952  ordtypelem8  7953  ordtypelem9  7954
  Copyright terms: Public domain W3C validator