MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtval Structured version   Unicode version

Theorem ordtval 20136
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
ordtval.3  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
Assertion
Ref Expression
ordtval  |-  ( R  e.  V  ->  (ordTop `  R )  =  (
topGen `  ( fi `  ( { X }  u.  ( A  u.  B
) ) ) ) )
Distinct variable groups:    x, y, R    x, X, y    x, V
Allowed substitution hints:    A( x, y)    B( x, y)    V( y)

Proof of Theorem ordtval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elex 3096 . 2  |-  ( R  e.  V  ->  R  e.  _V )
2 dmeq 5055 . . . . . . . 8  |-  ( r  =  R  ->  dom  r  =  dom  R )
3 ordtval.1 . . . . . . . 8  |-  X  =  dom  R
42, 3syl6eqr 2488 . . . . . . 7  |-  ( r  =  R  ->  dom  r  =  X )
54sneqd 4014 . . . . . 6  |-  ( r  =  R  ->  { dom  r }  =  { X } )
6 rnun 5264 . . . . . . 7  |-  ran  (
( x  e.  dom  r  |->  { y  e. 
dom  r  |  -.  y r x }
)  u.  ( x  e.  dom  r  |->  { y  e.  dom  r  |  -.  x r y } ) )  =  ( ran  ( x  e.  dom  r  |->  { y  e.  dom  r  |  -.  y r x } )  u.  ran  ( x  e.  dom  r  |->  { y  e. 
dom  r  |  -.  x r y } ) )
7 breq 4428 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
y r x  <->  y R x ) )
87notbid 295 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( -.  y r x  <->  -.  y R x ) )
94, 8rabeqbidv 3082 . . . . . . . . . . 11  |-  ( r  =  R  ->  { y  e.  dom  r  |  -.  y r x }  =  { y  e.  X  |  -.  y R x } )
104, 9mpteq12dv 4504 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x  e.  dom  r  |->  { y  e.  dom  r  |  -.  y
r x } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
1110rneqd 5082 . . . . . . . . 9  |-  ( r  =  R  ->  ran  ( x  e.  dom  r  |->  { y  e. 
dom  r  |  -.  y r x }
)  =  ran  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
) )
12 ordtval.2 . . . . . . . . 9  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
1311, 12syl6eqr 2488 . . . . . . . 8  |-  ( r  =  R  ->  ran  ( x  e.  dom  r  |->  { y  e. 
dom  r  |  -.  y r x }
)  =  A )
14 breq 4428 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
x r y  <->  x R
y ) )
1514notbid 295 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( -.  x r y  <->  -.  x R y ) )
164, 15rabeqbidv 3082 . . . . . . . . . . 11  |-  ( r  =  R  ->  { y  e.  dom  r  |  -.  x r y }  =  { y  e.  X  |  -.  x R y } )
174, 16mpteq12dv 4504 . . . . . . . . . 10  |-  ( r  =  R  ->  (
x  e.  dom  r  |->  { y  e.  dom  r  |  -.  x
r y } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
1817rneqd 5082 . . . . . . . . 9  |-  ( r  =  R  ->  ran  ( x  e.  dom  r  |->  { y  e. 
dom  r  |  -.  x r y } )  =  ran  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
19 ordtval.3 . . . . . . . . 9  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
2018, 19syl6eqr 2488 . . . . . . . 8  |-  ( r  =  R  ->  ran  ( x  e.  dom  r  |->  { y  e. 
dom  r  |  -.  x r y } )  =  B )
2113, 20uneq12d 3627 . . . . . . 7  |-  ( r  =  R  ->  ( ran  ( x  e.  dom  r  |->  { y  e. 
dom  r  |  -.  y r x }
)  u.  ran  (
x  e.  dom  r  |->  { y  e.  dom  r  |  -.  x
r y } ) )  =  ( A  u.  B ) )
226, 21syl5eq 2482 . . . . . 6  |-  ( r  =  R  ->  ran  ( ( x  e. 
dom  r  |->  { y  e.  dom  r  |  -.  y r x } )  u.  (
x  e.  dom  r  |->  { y  e.  dom  r  |  -.  x
r y } ) )  =  ( A  u.  B ) )
235, 22uneq12d 3627 . . . . 5  |-  ( r  =  R  ->  ( { dom  r }  u.  ran  ( ( x  e. 
dom  r  |->  { y  e.  dom  r  |  -.  y r x } )  u.  (
x  e.  dom  r  |->  { y  e.  dom  r  |  -.  x
r y } ) ) )  =  ( { X }  u.  ( A  u.  B
) ) )
2423fveq2d 5885 . . . 4  |-  ( r  =  R  ->  ( fi `  ( { dom  r }  u.  ran  ( ( x  e. 
dom  r  |->  { y  e.  dom  r  |  -.  y r x } )  u.  (
x  e.  dom  r  |->  { y  e.  dom  r  |  -.  x
r y } ) ) ) )  =  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
2524fveq2d 5885 . . 3  |-  ( r  =  R  ->  ( topGen `
 ( fi `  ( { dom  r }  u.  ran  ( ( x  e.  dom  r  |->  { y  e.  dom  r  |  -.  y
r x } )  u.  ( x  e. 
dom  r  |->  { y  e.  dom  r  |  -.  x r y } ) ) ) ) )  =  (
topGen `  ( fi `  ( { X }  u.  ( A  u.  B
) ) ) ) )
26 df-ordt 15358 . . 3  |- ordTop  =  ( r  e.  _V  |->  (
topGen `  ( fi `  ( { dom  r }  u.  ran  ( ( x  e.  dom  r  |->  { y  e.  dom  r  |  -.  y
r x } )  u.  ( x  e. 
dom  r  |->  { y  e.  dom  r  |  -.  x r y } ) ) ) ) ) )
27 fvex 5891 . . 3  |-  ( topGen `  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )  e. 
_V
2825, 26, 27fvmpt 5964 . 2  |-  ( R  e.  _V  ->  (ordTop `  R )  =  (
topGen `  ( fi `  ( { X }  u.  ( A  u.  B
) ) ) ) )
291, 28syl 17 1  |-  ( R  e.  V  ->  (ordTop `  R )  =  (
topGen `  ( fi `  ( { X }  u.  ( A  u.  B
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1437    e. wcel 1870   {crab 2786   _Vcvv 3087    u. cun 3440   {csn 4002   class class class wbr 4426    |-> cmpt 4484   dom cdm 4854   ran crn 4855   ` cfv 5601   ficfi 7930   topGenctg 15295  ordTopcordt 15356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-iota 5565  df-fun 5603  df-fv 5609  df-ordt 15358
This theorem is referenced by:  ordttopon  20140  ordtopn1  20141  ordtopn2  20142  ordtcnv  20148  ordtrest  20149  ordtrest2  20151  leordtval2  20159  ordthmeolem  20747  ordtprsval  28563  ordtrestNEW  28566
  Copyright terms: Public domain W3C validator