MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Structured version   Unicode version

Theorem ordtri3or 5417
Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 5415 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
2 ordirr 5403 . . . . . 6  |-  ( Ord  ( A  i^i  B
)  ->  -.  ( A  i^i  B )  e.  ( A  i^i  B
) )
31, 2syl 17 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  -.  ( A  i^i  B )  e.  ( A  i^i  B
) )
4 ianor 490 . . . . . 6  |-  ( -.  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B )  <->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
5 elin 3592 . . . . . . 7  |-  ( ( A  i^i  B )  e.  ( A  i^i  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( A  i^i  B )  e.  B ) )
6 incom 3598 . . . . . . . . 9  |-  ( A  i^i  B )  =  ( B  i^i  A
)
76eleq1i 2497 . . . . . . . 8  |-  ( ( A  i^i  B )  e.  B  <->  ( B  i^i  A )  e.  B
)
87anbi2i 698 . . . . . . 7  |-  ( ( ( A  i^i  B
)  e.  A  /\  ( A  i^i  B )  e.  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B ) )
95, 8bitri 252 . . . . . 6  |-  ( ( A  i^i  B )  e.  ( A  i^i  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B ) )
104, 9xchnxbir 310 . . . . 5  |-  ( -.  ( A  i^i  B
)  e.  ( A  i^i  B )  <->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
113, 10sylib 199 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
12 inss1 3625 . . . . . . . . . 10  |-  ( A  i^i  B )  C_  A
13 ordsseleq 5414 . . . . . . . . . 10  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  A
)  ->  ( ( A  i^i  B )  C_  A 
<->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) ) )
1412, 13mpbii 214 . . . . . . . . 9  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  A
)  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
151, 14sylan 473 . . . . . . . 8  |-  ( ( ( Ord  A  /\  Ord  B )  /\  Ord  A )  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
1615anabss1 821 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
1716ord 378 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  ->  ( A  i^i  B )  =  A ) )
18 df-ss 3393 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1917, 18syl6ibr 230 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  ->  A  C_  B ) )
20 ordin 5415 . . . . . . . . 9  |-  ( ( Ord  B  /\  Ord  A )  ->  Ord  ( B  i^i  A ) )
21 inss1 3625 . . . . . . . . . 10  |-  ( B  i^i  A )  C_  B
22 ordsseleq 5414 . . . . . . . . . 10  |-  ( ( Ord  ( B  i^i  A )  /\  Ord  B
)  ->  ( ( B  i^i  A )  C_  B 
<->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) ) )
2321, 22mpbii 214 . . . . . . . . 9  |-  ( ( Ord  ( B  i^i  A )  /\  Ord  B
)  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2420, 23sylan 473 . . . . . . . 8  |-  ( ( ( Ord  B  /\  Ord  A )  /\  Ord  B )  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2524anabss4 822 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2625ord 378 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( B  i^i  A )  e.  B  ->  ( B  i^i  A )  =  B ) )
27 df-ss 3393 . . . . . 6  |-  ( B 
C_  A  <->  ( B  i^i  A )  =  B )
2826, 27syl6ibr 230 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( B  i^i  A )  e.  B  ->  B  C_  A ) )
2919, 28orim12d 846 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( -.  ( A  i^i  B
)  e.  A  \/  -.  ( B  i^i  A
)  e.  B )  ->  ( A  C_  B  \/  B  C_  A
) ) )
3011, 29mpd 15 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  \/  B  C_  A ) )
31 sspsstri 3510 . . 3  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
3230, 31sylib 199 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
33 ordelpss 5413 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  A  C.  B ) )
34 biidd 240 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  A  =  B
) )
35 ordelpss 5413 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  e.  A  <->  B  C.  A ) )
3635ancoms 454 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( B  e.  A  <->  B  C.  A ) )
3733, 34, 363orbi123d 1334 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) ) )
3832, 37mpbird 235 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    \/ w3o 981    = wceq 1437    e. wcel 1872    i^i cin 3378    C_ wss 3379    C. wpss 3380   Ord word 5384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pr 4603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-tr 4462  df-eprel 4707  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-ord 5388
This theorem is referenced by:  ordtri1  5418  ordtri3  5421  ordon  6567  ordeleqon  6573  smo11  7038  smoord  7039  omopth2  7240  r111  8198  tcrank  8307  domtriomlem  8823  axdc3lem2  8832  zorn2lem6  8882  grur1  9196  poseq  30442  soseq  30443
  Copyright terms: Public domain W3C validator