MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri3or Unicode version

Theorem ordtri3or 4317
Description: A trichotomy law for ordinals. Proposition 7.10 of [TakeutiZaring] p. 38. (Contributed by NM, 10-May-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri3or  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )

Proof of Theorem ordtri3or
StepHypRef Expression
1 ordin 4315 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
2 ordirr 4303 . . . . . 6  |-  ( Ord  ( A  i^i  B
)  ->  -.  ( A  i^i  B )  e.  ( A  i^i  B
) )
31, 2syl 17 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  -.  ( A  i^i  B )  e.  ( A  i^i  B
) )
4 ianor 476 . . . . . 6  |-  ( -.  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B )  <->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
5 elin 3266 . . . . . . 7  |-  ( ( A  i^i  B )  e.  ( A  i^i  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( A  i^i  B )  e.  B ) )
6 incom 3269 . . . . . . . . 9  |-  ( A  i^i  B )  =  ( B  i^i  A
)
76eleq1i 2316 . . . . . . . 8  |-  ( ( A  i^i  B )  e.  B  <->  ( B  i^i  A )  e.  B
)
87anbi2i 678 . . . . . . 7  |-  ( ( ( A  i^i  B
)  e.  A  /\  ( A  i^i  B )  e.  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B ) )
95, 8bitri 242 . . . . . 6  |-  ( ( A  i^i  B )  e.  ( A  i^i  B )  <->  ( ( A  i^i  B )  e.  A  /\  ( B  i^i  A )  e.  B ) )
104, 9xchnxbir 302 . . . . 5  |-  ( -.  ( A  i^i  B
)  e.  ( A  i^i  B )  <->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
113, 10sylib 190 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  \/  -.  ( B  i^i  A )  e.  B ) )
12 inss1 3296 . . . . . . . . . 10  |-  ( A  i^i  B )  C_  A
13 ordsseleq 4314 . . . . . . . . . 10  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  A
)  ->  ( ( A  i^i  B )  C_  A 
<->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) ) )
1412, 13mpbii 204 . . . . . . . . 9  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  A
)  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
151, 14sylan 459 . . . . . . . 8  |-  ( ( ( Ord  A  /\  Ord  B )  /\  Ord  A )  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
1615anabss1 790 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  i^i  B )  e.  A  \/  ( A  i^i  B )  =  A ) )
1716ord 368 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  ->  ( A  i^i  B )  =  A ) )
18 df-ss 3089 . . . . . 6  |-  ( A 
C_  B  <->  ( A  i^i  B )  =  A )
1917, 18syl6ibr 220 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( A  i^i  B )  e.  A  ->  A  C_  B ) )
20 ordin 4315 . . . . . . . . 9  |-  ( ( Ord  B  /\  Ord  A )  ->  Ord  ( B  i^i  A ) )
21 inss1 3296 . . . . . . . . . 10  |-  ( B  i^i  A )  C_  B
22 ordsseleq 4314 . . . . . . . . . 10  |-  ( ( Ord  ( B  i^i  A )  /\  Ord  B
)  ->  ( ( B  i^i  A )  C_  B 
<->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) ) )
2321, 22mpbii 204 . . . . . . . . 9  |-  ( ( Ord  ( B  i^i  A )  /\  Ord  B
)  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2420, 23sylan 459 . . . . . . . 8  |-  ( ( ( Ord  B  /\  Ord  A )  /\  Ord  B )  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2524anabss4 791 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( B  i^i  A )  e.  B  \/  ( B  i^i  A )  =  B ) )
2625ord 368 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( B  i^i  A )  e.  B  ->  ( B  i^i  A )  =  B ) )
27 df-ss 3089 . . . . . 6  |-  ( B 
C_  A  <->  ( B  i^i  A )  =  B )
2826, 27syl6ibr 220 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  ( B  i^i  A )  e.  B  ->  B  C_  A ) )
2919, 28orim12d 814 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( -.  ( A  i^i  B
)  e.  A  \/  -.  ( B  i^i  A
)  e.  B )  ->  ( A  C_  B  \/  B  C_  A
) ) )
3011, 29mpd 16 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  \/  B  C_  A ) )
31 sspsstri 3198 . . 3  |-  ( ( A  C_  B  \/  B  C_  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
3230, 31sylib 190 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) )
33 ordelpss 4313 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  A  C.  B ) )
34 biidd 230 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  A  =  B
) )
35 ordelpss 4313 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  e.  A  <->  B  C.  A ) )
3635ancoms 441 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  ( B  e.  A  <->  B  C.  A ) )
3733, 34, 363orbi123d 1256 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( A  C.  B  \/  A  =  B  \/  B  C.  A ) ) )
3832, 37mpbird 225 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    \/ w3o 938    = wceq 1619    e. wcel 1621    i^i cin 3077    C_ wss 3078    C. wpss 3079   Ord word 4284
This theorem is referenced by:  ordtri1  4318  ordtri3  4321  ordon  4465  ordeleqon  4471  smo11  6267  smoord  6268  omopth2  6468  r111  7331  tcrank  7438  domtriomlem  7952  axdc3lem2  7961  zorn2lem6  8012  grur1  8322  poseq  23421  soseq  23422  celsor  24276
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288
  Copyright terms: Public domain W3C validator