MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn2 Structured version   Unicode version

Theorem ordtopn2 18799
Description: A downward ray  ( -oo ,  P ) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3  |-  X  =  dom  R
Assertion
Ref Expression
ordtopn2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  (ordTop `  R ) )
Distinct variable groups:    x, P    x, R    x, V    x, X

Proof of Theorem ordtopn2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9  |-  X  =  dom  R
2 eqid 2443 . . . . . . . . 9  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } )  =  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } )
3 eqid 2443 . . . . . . . . 9  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)  =  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)
41, 2, 3ordtuni 18794 . . . . . . . 8  |-  ( R  e.  V  ->  X  =  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
54adantr 465 . . . . . . 7  |-  ( ( R  e.  V  /\  P  e.  X )  ->  X  =  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
6 dmexg 6509 . . . . . . . . 9  |-  ( R  e.  V  ->  dom  R  e.  _V )
71, 6syl5eqel 2527 . . . . . . . 8  |-  ( R  e.  V  ->  X  e.  _V )
87adantr 465 . . . . . . 7  |-  ( ( R  e.  V  /\  P  e.  X )  ->  X  e.  _V )
95, 8eqeltrrd 2518 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
10 uniexb 6386 . . . . . 6  |-  ( ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V  <->  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
119, 10sylibr 212 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
12 ssfii 7669 . . . . 5  |-  ( ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
1311, 12syl 16 . . . 4  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
14 fibas 18582 . . . . 5  |-  ( fi
`  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  e.  TopBases
15 bastg 18571 . . . . 5  |-  ( ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  e.  TopBases  ->  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  C_  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
1614, 15ax-mp 5 . . . 4  |-  ( fi
`  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  C_  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
1713, 16syl6ss 3368 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( topGen `
 ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
181, 2, 3ordtval 18793 . . . 4  |-  ( R  e.  V  ->  (ordTop `  R )  =  (
topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
1918adantr 465 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  (ordTop `  R )  =  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
2017, 19sseqtr4d 3393 . 2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  (ordTop `  R ) )
21 ssun2 3520 . . 3  |-  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) )  C_  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )
22 ssun2 3520 . . . 4  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)  C_  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) )
23 simpr 461 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  P  e.  X )
24 eqidd 2444 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  P R x } )
25 breq1 4295 . . . . . . . . . 10  |-  ( y  =  P  ->  (
y R x  <->  P R x ) )
2625notbid 294 . . . . . . . . 9  |-  ( y  =  P  ->  ( -.  y R x  <->  -.  P R x ) )
2726rabbidv 2964 . . . . . . . 8  |-  ( y  =  P  ->  { x  e.  X  |  -.  y R x }  =  { x  e.  X  |  -.  P R x } )
2827eqeq2d 2454 . . . . . . 7  |-  ( y  =  P  ->  ( { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x }  <->  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  P R x } ) )
2928rspcev 3073 . . . . . 6  |-  ( ( P  e.  X  /\  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  P R x } )  ->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } )
3023, 24, 29syl2anc 661 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } )
31 rabexg 4442 . . . . . 6  |-  ( X  e.  _V  ->  { x  e.  X  |  -.  P R x }  e.  _V )
32 eqid 2443 . . . . . . 7  |-  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )  =  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )
3332elrnmpt 5086 . . . . . 6  |-  ( { x  e.  X  |  -.  P R x }  e.  _V  ->  ( {
x  e.  X  |  -.  P R x }  e.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )  <->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } ) )
348, 31, 333syl 20 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { x  e.  X  |  -.  P R x }  e.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )  <->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } ) )
3530, 34mpbird 232 . . . 4  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
) )
3622, 35sseldi 3354 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )
3721, 36sseldi 3354 . 2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
3820, 37sseldd 3357 1  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  (ordTop `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2716   {crab 2719   _Vcvv 2972    u. cun 3326    C_ wss 3328   {csn 3877   U.cuni 4091   class class class wbr 4292    e. cmpt 4350   dom cdm 4840   ran crn 4841   ` cfv 5418   ficfi 7660   topGenctg 14376  ordTopcordt 14437   TopBasesctb 18502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-fin 7314  df-fi 7661  df-topgen 14382  df-ordt 14439  df-bases 18505
This theorem is referenced by:  ordtopn3  18800  ordtcld2  18802  ordtrest  18806  ordthauslem  18987  ordthmeolem  19374  ordtrestNEW  26351
  Copyright terms: Public domain W3C validator