MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthmeolem Structured version   Unicode version

Theorem ordthmeolem 19374
Description: Lemma for ordthmeo 19375. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordthmeo.1  |-  X  =  dom  R
ordthmeo.2  |-  Y  =  dom  S
Assertion
Ref Expression
ordthmeolem  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F  e.  ( (ordTop `  R )  Cn  (ordTop `  S )
) )

Proof of Theorem ordthmeolem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 6016 . . . 4  |-  ( F 
Isom  R ,  S  ( X ,  Y )  ->  F : X -1-1-onto-> Y
)
213ad2ant3 1011 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F : X
-1-1-onto-> Y )
3 f1of 5641 . . 3  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
42, 3syl 16 . 2  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F : X
--> Y )
5 fimacnv 5835 . . . . . . 7  |-  ( F : X --> Y  -> 
( `' F " Y )  =  X )
64, 5syl 16 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( `' F " Y )  =  X )
7 ordthmeo.1 . . . . . . . . 9  |-  X  =  dom  R
87ordttopon 18797 . . . . . . . 8  |-  ( R  e.  V  ->  (ordTop `  R )  e.  (TopOn `  X ) )
983ad2ant1 1009 . . . . . . 7  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  (ordTop `  R
)  e.  (TopOn `  X ) )
10 toponmax 18533 . . . . . . 7  |-  ( (ordTop `  R )  e.  (TopOn `  X )  ->  X  e.  (ordTop `  R )
)
119, 10syl 16 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  X  e.  (ordTop `  R ) )
126, 11eqeltrd 2517 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( `' F " Y )  e.  (ordTop `  R )
)
13 elsni 3902 . . . . . . 7  |-  ( z  e.  { Y }  ->  z  =  Y )
1413imaeq2d 5169 . . . . . 6  |-  ( z  e.  { Y }  ->  ( `' F "
z )  =  ( `' F " Y ) )
1514eleq1d 2509 . . . . 5  |-  ( z  e.  { Y }  ->  ( ( `' F " z )  e.  (ordTop `  R )  <->  ( `' F " Y )  e.  (ordTop `  R )
) )
1612, 15syl5ibrcom 222 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( z  e.  { Y }  ->  ( `' F " z )  e.  (ordTop `  R
) ) )
1716ralrimiv 2798 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  { Y }  ( `' F " z )  e.  (ordTop `  R
) )
18 cnvimass 5189 . . . . . . . . . 10  |-  ( `' F " { y  e.  Y  |  -.  y S x } ) 
C_  dom  F
19 f1odm 5645 . . . . . . . . . . . 12  |-  ( F : X -1-1-onto-> Y  ->  dom  F  =  X )
202, 19syl 16 . . . . . . . . . . 11  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  dom  F  =  X )
2120adantr 465 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  dom  F  =  X )
2218, 21syl5sseq 3404 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  y S x } )  C_  X
)
23 dfss1 3555 . . . . . . . . 9  |-  ( ( `' F " { y  e.  Y  |  -.  y S x } ) 
C_  X  <->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  y S x } ) )  =  ( `' F " { y  e.  Y  |  -.  y S x } ) )
2422, 23sylib 196 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  y S x } ) )  =  ( `' F " { y  e.  Y  |  -.  y S x } ) )
252ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  F : X -1-1-onto-> Y )
26 f1ofn 5642 . . . . . . . . . . . 12  |-  ( F : X -1-1-onto-> Y  ->  F  Fn  X )
2725, 26syl 16 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  F  Fn  X )
28 elpreima 5823 . . . . . . . . . . 11  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  y S x } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  y S x } ) ) )
2927, 28syl 16 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  y S x } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  y S x } ) ) )
30 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  z  e.  X )
3130biantrurd 508 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  ( z  e.  X  /\  ( F `  z )  e.  { y  e.  Y  |  -.  y S x } ) ) )
324adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  F : X --> Y )
3332ffvelrnda 5843 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( F `  z )  e.  Y )
34 breq1 4295 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  z )  ->  (
y S x  <->  ( F `  z ) S x ) )
3534notbid 294 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  z )  ->  ( -.  y S x  <->  -.  ( F `  z ) S x ) )
3635elrab3 3118 . . . . . . . . . . . 12  |-  ( ( F `  z )  e.  Y  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  -.  ( F `  z ) S x ) )
3733, 36syl 16 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  -.  ( F `  z ) S x ) )
38 simpll3 1029 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  F  Isom  R ,  S  ( X ,  Y ) )
39 f1ocnv 5653 . . . . . . . . . . . . . . . . 17  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
40 f1of 5641 . . . . . . . . . . . . . . . . 17  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
412, 39, 403syl 20 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  `' F : Y --> X )
4241ffvelrnda 5843 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F `  x )  e.  X
)
4342adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( `' F `  x )  e.  X )
44 isorel 6017 . . . . . . . . . . . . . 14  |-  ( ( F  Isom  R ,  S  ( X ,  Y )  /\  (
z  e.  X  /\  ( `' F `  x )  e.  X ) )  ->  ( z R ( `' F `  x )  <->  ( F `  z ) S ( F `  ( `' F `  x ) ) ) )
4538, 30, 43, 44syl12anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z R ( `' F `  x )  <-> 
( F `  z
) S ( F `
 ( `' F `  x ) ) ) )
46 f1ocnvfv2 5984 . . . . . . . . . . . . . . . 16  |-  ( ( F : X -1-1-onto-> Y  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
472, 46sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
4847adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( F `  ( `' F `  x )
)  =  x )
4948breq2d 4304 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
) S ( F `
 ( `' F `  x ) )  <->  ( F `  z ) S x ) )
5045, 49bitrd 253 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z R ( `' F `  x )  <-> 
( F `  z
) S x ) )
5150notbid 294 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( -.  z R ( `' F `  x )  <->  -.  ( F `  z
) S x ) )
5237, 51bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  -.  z R ( `' F `  x ) ) )
5329, 31, 523bitr2d 281 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  y S x } )  <->  -.  z R ( `' F `  x ) ) )
5453rabbi2dva 3558 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  y S x } ) )  =  { z  e.  X  |  -.  z R ( `' F `  x ) } )
5524, 54eqtr3d 2477 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  y S x } )  =  {
z  e.  X  |  -.  z R ( `' F `  x ) } )
56 simpl1 991 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  R  e.  V )
577ordtopn1 18798 . . . . . . . 8  |-  ( ( R  e.  V  /\  ( `' F `  x )  e.  X )  ->  { z  e.  X  |  -.  z R ( `' F `  x ) }  e.  (ordTop `  R ) )
5856, 42, 57syl2anc 661 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  { z  e.  X  |  -.  z R ( `' F `  x ) }  e.  (ordTop `  R ) )
5955, 58eqeltrd 2517 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R ) )
6059ralrimiva 2799 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) )
61 ordthmeo.2 . . . . . . . . . 10  |-  Y  =  dom  S
62 dmexg 6509 . . . . . . . . . 10  |-  ( S  e.  W  ->  dom  S  e.  _V )
6361, 62syl5eqel 2527 . . . . . . . . 9  |-  ( S  e.  W  ->  Y  e.  _V )
64633ad2ant2 1010 . . . . . . . 8  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  Y  e.  _V )
65 rabexg 4442 . . . . . . . 8  |-  ( Y  e.  _V  ->  { y  e.  Y  |  -.  y S x }  e.  _V )
6664, 65syl 16 . . . . . . 7  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  { y  e.  Y  |  -.  y S x }  e.  _V )
6766ralrimivw 2800 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  { y  e.  Y  |  -.  y S x }  e.  _V )
68 eqid 2443 . . . . . . 7  |-  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  =  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )
69 imaeq2 5165 . . . . . . . 8  |-  ( z  =  { y  e.  Y  |  -.  y S x }  ->  ( `' F " z )  =  ( `' F " { y  e.  Y  |  -.  y S x } ) )
7069eleq1d 2509 . . . . . . 7  |-  ( z  =  { y  e.  Y  |  -.  y S x }  ->  ( ( `' F "
z )  e.  (ordTop `  R )  <->  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) ) )
7168, 70ralrnmpt 5852 . . . . . 6  |-  ( A. x  e.  Y  {
y  e.  Y  |  -.  y S x }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R )  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) ) )
7267, 71syl 16 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R )  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) ) )
7360, 72mpbird 232 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R ) )
74 cnvimass 5189 . . . . . . . . . 10  |-  ( `' F " { y  e.  Y  |  -.  x S y } ) 
C_  dom  F
7574, 21syl5sseq 3404 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  x S y } )  C_  X
)
76 dfss1 3555 . . . . . . . . 9  |-  ( ( `' F " { y  e.  Y  |  -.  x S y } ) 
C_  X  <->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  x S y } ) )  =  ( `' F " { y  e.  Y  |  -.  x S y } ) )
7775, 76sylib 196 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  x S y } ) )  =  ( `' F " { y  e.  Y  |  -.  x S y } ) )
78 elpreima 5823 . . . . . . . . . . 11  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  x S y } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  x S y } ) ) )
7927, 78syl 16 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  x S y } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  x S y } ) ) )
8030biantrurd 508 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  ( z  e.  X  /\  ( F `  z )  e.  { y  e.  Y  |  -.  x S y } ) ) )
81 breq2 4296 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  z )  ->  (
x S y  <->  x S
( F `  z
) ) )
8281notbid 294 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  z )  ->  ( -.  x S y  <->  -.  x S ( F `  z ) ) )
8382elrab3 3118 . . . . . . . . . . . 12  |-  ( ( F `  z )  e.  Y  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  -.  x S ( F `  z ) ) )
8433, 83syl 16 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  -.  x S ( F `  z ) ) )
85 isorel 6017 . . . . . . . . . . . . . 14  |-  ( ( F  Isom  R ,  S  ( X ,  Y )  /\  (
( `' F `  x )  e.  X  /\  z  e.  X
) )  ->  (
( `' F `  x ) R z  <-> 
( F `  ( `' F `  x ) ) S ( F `
 z ) ) )
8638, 43, 30, 85syl12anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( `' F `  x ) R z  <-> 
( F `  ( `' F `  x ) ) S ( F `
 z ) ) )
8748breq1d 4302 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  ( `' F `  x ) ) S ( F `
 z )  <->  x S
( F `  z
) ) )
8886, 87bitrd 253 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( `' F `  x ) R z  <-> 
x S ( F `
 z ) ) )
8988notbid 294 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( -.  ( `' F `  x ) R z  <->  -.  x S ( F `
 z ) ) )
9084, 89bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  -.  ( `' F `  x ) R z ) )
9179, 80, 903bitr2d 281 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  x S y } )  <->  -.  ( `' F `  x ) R z ) )
9291rabbi2dva 3558 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  x S y } ) )  =  { z  e.  X  |  -.  ( `' F `  x ) R z } )
9377, 92eqtr3d 2477 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  x S y } )  =  {
z  e.  X  |  -.  ( `' F `  x ) R z } )
947ordtopn2 18799 . . . . . . . 8  |-  ( ( R  e.  V  /\  ( `' F `  x )  e.  X )  ->  { z  e.  X  |  -.  ( `' F `  x ) R z }  e.  (ordTop `  R ) )
9556, 42, 94syl2anc 661 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  { z  e.  X  |  -.  ( `' F `  x ) R z }  e.  (ordTop `  R ) )
9693, 95eqeltrd 2517 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R ) )
9796ralrimiva 2799 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) )
98 rabexg 4442 . . . . . . . 8  |-  ( Y  e.  _V  ->  { y  e.  Y  |  -.  x S y }  e.  _V )
9964, 98syl 16 . . . . . . 7  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  { y  e.  Y  |  -.  x S y }  e.  _V )
10099ralrimivw 2800 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  { y  e.  Y  |  -.  x S y }  e.  _V )
101 eqid 2443 . . . . . . 7  |-  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )  =  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )
102 imaeq2 5165 . . . . . . . 8  |-  ( z  =  { y  e.  Y  |  -.  x S y }  ->  ( `' F " z )  =  ( `' F " { y  e.  Y  |  -.  x S y } ) )
103102eleq1d 2509 . . . . . . 7  |-  ( z  =  { y  e.  Y  |  -.  x S y }  ->  ( ( `' F "
z )  e.  (ordTop `  R )  <->  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) ) )
104101, 103ralrnmpt 5852 . . . . . 6  |-  ( A. x  e.  Y  {
y  e.  Y  |  -.  x S y }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F " z )  e.  (ordTop `  R
)  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) ) )
105100, 104syl 16 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F "
z )  e.  (ordTop `  R )  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) ) )
10697, 105mpbird 232 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F "
z )  e.  (ordTop `  R ) )
107 ralunb 3537 . . . 4  |-  ( A. z  e.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ( `' F " z )  e.  (ordTop `  R
)  <->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R )  /\  A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F "
z )  e.  (ordTop `  R ) ) )
10873, 106, 107sylanbrc 664 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ( `' F " z )  e.  (ordTop `  R ) )
109 ralunb 3537 . . 3  |-  ( A. z  e.  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ( `' F "
z )  e.  (ordTop `  R )  <->  ( A. z  e.  { Y }  ( `' F " z )  e.  (ordTop `  R )  /\  A. z  e.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ( `' F " z )  e.  (ordTop `  R
) ) )
11017, 108, 109sylanbrc 664 . 2  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ( `' F " z )  e.  (ordTop `  R
) )
111 eqid 2443 . . . . . . 7  |-  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  y S x }
)  =  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  y S x }
)
112 eqid 2443 . . . . . . 7  |-  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )  =  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )
11361, 111, 112ordtuni 18794 . . . . . 6  |-  ( S  e.  W  ->  Y  =  U. ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) )
114113, 63eqeltrrd 2518 . . . . 5  |-  ( S  e.  W  ->  U. ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
115 uniexb 6386 . . . . 5  |-  ( ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V  <->  U. ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
116114, 115sylibr 212 . . . 4  |-  ( S  e.  W  ->  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
1171163ad2ant2 1010 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
11861, 111, 112ordtval 18793 . . . 4  |-  ( S  e.  W  ->  (ordTop `  S )  =  (
topGen `  ( fi `  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ) ) )
1191183ad2ant2 1010 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  (ordTop `  S
)  =  ( topGen `  ( fi `  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ) ) )
12061ordttopon 18797 . . . 4  |-  ( S  e.  W  ->  (ordTop `  S )  e.  (TopOn `  Y ) )
1211203ad2ant2 1010 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  (ordTop `  S
)  e.  (TopOn `  Y ) )
1229, 117, 119, 121subbascn 18858 . 2  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( F  e.  ( (ordTop `  R
)  Cn  (ordTop `  S ) )  <->  ( F : X --> Y  /\  A. z  e.  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ( `' F "
z )  e.  (ordTop `  R ) ) ) )
1234, 110, 122mpbir2and 913 1  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F  e.  ( (ordTop `  R )  Cn  (ordTop `  S )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715   {crab 2719   _Vcvv 2972    u. cun 3326    i^i cin 3327    C_ wss 3328   {csn 3877   U.cuni 4091   class class class wbr 4292    e. cmpt 4350   `'ccnv 4839   dom cdm 4840   ran crn 4841   "cima 4843    Fn wfn 5413   -->wf 5414   -1-1-onto->wf1o 5417   ` cfv 5418    Isom wiso 5419  (class class class)co 6091   ficfi 7660   topGenctg 14376  ordTopcordt 14437  TopOnctopon 18499    Cn ccn 18828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-fin 7314  df-fi 7661  df-topgen 14382  df-ordt 14439  df-top 18503  df-bases 18505  df-topon 18506  df-cn 18831
This theorem is referenced by:  ordthmeo  19375  xrmulc1cn  26360
  Copyright terms: Public domain W3C validator