MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthmeolem Structured version   Visualization version   Unicode version

Theorem ordthmeolem 20864
Description: Lemma for ordthmeo 20865. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordthmeo.1  |-  X  =  dom  R
ordthmeo.2  |-  Y  =  dom  S
Assertion
Ref Expression
ordthmeolem  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F  e.  ( (ordTop `  R )  Cn  (ordTop `  S )
) )

Proof of Theorem ordthmeolem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 6240 . . . 4  |-  ( F 
Isom  R ,  S  ( X ,  Y )  ->  F : X -1-1-onto-> Y
)
213ad2ant3 1037 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F : X
-1-1-onto-> Y )
3 f1of 5836 . . 3  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
42, 3syl 17 . 2  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F : X
--> Y )
5 fimacnv 6034 . . . . . . 7  |-  ( F : X --> Y  -> 
( `' F " Y )  =  X )
64, 5syl 17 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( `' F " Y )  =  X )
7 ordthmeo.1 . . . . . . . . 9  |-  X  =  dom  R
87ordttopon 20257 . . . . . . . 8  |-  ( R  e.  V  ->  (ordTop `  R )  e.  (TopOn `  X ) )
983ad2ant1 1035 . . . . . . 7  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  (ordTop `  R
)  e.  (TopOn `  X ) )
10 toponmax 19991 . . . . . . 7  |-  ( (ordTop `  R )  e.  (TopOn `  X )  ->  X  e.  (ordTop `  R )
)
119, 10syl 17 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  X  e.  (ordTop `  R ) )
126, 11eqeltrd 2539 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( `' F " Y )  e.  (ordTop `  R )
)
13 elsni 4004 . . . . . . 7  |-  ( z  e.  { Y }  ->  z  =  Y )
1413imaeq2d 5186 . . . . . 6  |-  ( z  e.  { Y }  ->  ( `' F "
z )  =  ( `' F " Y ) )
1514eleq1d 2523 . . . . 5  |-  ( z  e.  { Y }  ->  ( ( `' F " z )  e.  (ordTop `  R )  <->  ( `' F " Y )  e.  (ordTop `  R )
) )
1612, 15syl5ibrcom 230 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( z  e.  { Y }  ->  ( `' F " z )  e.  (ordTop `  R
) ) )
1716ralrimiv 2811 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  { Y }  ( `' F " z )  e.  (ordTop `  R
) )
18 cnvimass 5206 . . . . . . . . . 10  |-  ( `' F " { y  e.  Y  |  -.  y S x } ) 
C_  dom  F
19 f1odm 5840 . . . . . . . . . . . 12  |-  ( F : X -1-1-onto-> Y  ->  dom  F  =  X )
202, 19syl 17 . . . . . . . . . . 11  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  dom  F  =  X )
2120adantr 471 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  dom  F  =  X )
2218, 21syl5sseq 3491 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  y S x } )  C_  X
)
23 dfss1 3648 . . . . . . . . 9  |-  ( ( `' F " { y  e.  Y  |  -.  y S x } ) 
C_  X  <->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  y S x } ) )  =  ( `' F " { y  e.  Y  |  -.  y S x } ) )
2422, 23sylib 201 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  y S x } ) )  =  ( `' F " { y  e.  Y  |  -.  y S x } ) )
252ad2antrr 737 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  F : X -1-1-onto-> Y )
26 f1ofn 5837 . . . . . . . . . . . 12  |-  ( F : X -1-1-onto-> Y  ->  F  Fn  X )
2725, 26syl 17 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  F  Fn  X )
28 elpreima 6024 . . . . . . . . . . 11  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  y S x } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  y S x } ) ) )
2927, 28syl 17 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  y S x } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  y S x } ) ) )
30 simpr 467 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  z  e.  X )
3130biantrurd 515 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  ( z  e.  X  /\  ( F `  z )  e.  { y  e.  Y  |  -.  y S x } ) ) )
324adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  F : X --> Y )
3332ffvelrnda 6044 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( F `  z )  e.  Y )
34 breq1 4418 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  z )  ->  (
y S x  <->  ( F `  z ) S x ) )
3534notbid 300 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  z )  ->  ( -.  y S x  <->  -.  ( F `  z ) S x ) )
3635elrab3 3208 . . . . . . . . . . . 12  |-  ( ( F `  z )  e.  Y  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  -.  ( F `  z ) S x ) )
3733, 36syl 17 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  -.  ( F `  z ) S x ) )
38 simpll3 1055 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  F  Isom  R ,  S  ( X ,  Y ) )
39 f1ocnv 5848 . . . . . . . . . . . . . . . . 17  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
40 f1of 5836 . . . . . . . . . . . . . . . . 17  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
412, 39, 403syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  `' F : Y --> X )
4241ffvelrnda 6044 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F `  x )  e.  X
)
4342adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( `' F `  x )  e.  X )
44 isorel 6241 . . . . . . . . . . . . . 14  |-  ( ( F  Isom  R ,  S  ( X ,  Y )  /\  (
z  e.  X  /\  ( `' F `  x )  e.  X ) )  ->  ( z R ( `' F `  x )  <->  ( F `  z ) S ( F `  ( `' F `  x ) ) ) )
4538, 30, 43, 44syl12anc 1274 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z R ( `' F `  x )  <-> 
( F `  z
) S ( F `
 ( `' F `  x ) ) ) )
46 f1ocnvfv2 6200 . . . . . . . . . . . . . . . 16  |-  ( ( F : X -1-1-onto-> Y  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
472, 46sylan 478 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
4847adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( F `  ( `' F `  x )
)  =  x )
4948breq2d 4427 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
) S ( F `
 ( `' F `  x ) )  <->  ( F `  z ) S x ) )
5045, 49bitrd 261 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z R ( `' F `  x )  <-> 
( F `  z
) S x ) )
5150notbid 300 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( -.  z R ( `' F `  x )  <->  -.  ( F `  z
) S x ) )
5237, 51bitr4d 264 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  y S x }  <->  -.  z R ( `' F `  x ) ) )
5329, 31, 523bitr2d 289 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  y S x } )  <->  -.  z R ( `' F `  x ) ) )
5453rabbi2dva 3651 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  y S x } ) )  =  { z  e.  X  |  -.  z R ( `' F `  x ) } )
5524, 54eqtr3d 2497 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  y S x } )  =  {
z  e.  X  |  -.  z R ( `' F `  x ) } )
56 simpl1 1017 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  R  e.  V )
577ordtopn1 20258 . . . . . . . 8  |-  ( ( R  e.  V  /\  ( `' F `  x )  e.  X )  ->  { z  e.  X  |  -.  z R ( `' F `  x ) }  e.  (ordTop `  R ) )
5856, 42, 57syl2anc 671 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  { z  e.  X  |  -.  z R ( `' F `  x ) }  e.  (ordTop `  R ) )
5955, 58eqeltrd 2539 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R ) )
6059ralrimiva 2813 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) )
61 ordthmeo.2 . . . . . . . . . 10  |-  Y  =  dom  S
62 dmexg 6750 . . . . . . . . . 10  |-  ( S  e.  W  ->  dom  S  e.  _V )
6361, 62syl5eqel 2543 . . . . . . . . 9  |-  ( S  e.  W  ->  Y  e.  _V )
64633ad2ant2 1036 . . . . . . . 8  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  Y  e.  _V )
65 rabexg 4566 . . . . . . . 8  |-  ( Y  e.  _V  ->  { y  e.  Y  |  -.  y S x }  e.  _V )
6664, 65syl 17 . . . . . . 7  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  { y  e.  Y  |  -.  y S x }  e.  _V )
6766ralrimivw 2814 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  { y  e.  Y  |  -.  y S x }  e.  _V )
68 eqid 2461 . . . . . . 7  |-  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  =  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )
69 imaeq2 5182 . . . . . . . 8  |-  ( z  =  { y  e.  Y  |  -.  y S x }  ->  ( `' F " z )  =  ( `' F " { y  e.  Y  |  -.  y S x } ) )
7069eleq1d 2523 . . . . . . 7  |-  ( z  =  { y  e.  Y  |  -.  y S x }  ->  ( ( `' F "
z )  e.  (ordTop `  R )  <->  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) ) )
7168, 70ralrnmpt 6053 . . . . . 6  |-  ( A. x  e.  Y  {
y  e.  Y  |  -.  y S x }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R )  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) ) )
7267, 71syl 17 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R )  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  y S x } )  e.  (ordTop `  R
) ) )
7360, 72mpbird 240 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R ) )
74 cnvimass 5206 . . . . . . . . . 10  |-  ( `' F " { y  e.  Y  |  -.  x S y } ) 
C_  dom  F
7574, 21syl5sseq 3491 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  x S y } )  C_  X
)
76 dfss1 3648 . . . . . . . . 9  |-  ( ( `' F " { y  e.  Y  |  -.  x S y } ) 
C_  X  <->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  x S y } ) )  =  ( `' F " { y  e.  Y  |  -.  x S y } ) )
7775, 76sylib 201 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  x S y } ) )  =  ( `' F " { y  e.  Y  |  -.  x S y } ) )
78 elpreima 6024 . . . . . . . . . . 11  |-  ( F  Fn  X  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  x S y } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  x S y } ) ) )
7927, 78syl 17 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  x S y } )  <-> 
( z  e.  X  /\  ( F `  z
)  e.  { y  e.  Y  |  -.  x S y } ) ) )
8030biantrurd 515 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  ( z  e.  X  /\  ( F `  z )  e.  { y  e.  Y  |  -.  x S y } ) ) )
81 breq2 4419 . . . . . . . . . . . . . 14  |-  ( y  =  ( F `  z )  ->  (
x S y  <->  x S
( F `  z
) ) )
8281notbid 300 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  z )  ->  ( -.  x S y  <->  -.  x S ( F `  z ) ) )
8382elrab3 3208 . . . . . . . . . . . 12  |-  ( ( F `  z )  e.  Y  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  -.  x S ( F `  z ) ) )
8433, 83syl 17 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  -.  x S ( F `  z ) ) )
85 isorel 6241 . . . . . . . . . . . . . 14  |-  ( ( F  Isom  R ,  S  ( X ,  Y )  /\  (
( `' F `  x )  e.  X  /\  z  e.  X
) )  ->  (
( `' F `  x ) R z  <-> 
( F `  ( `' F `  x ) ) S ( F `
 z ) ) )
8638, 43, 30, 85syl12anc 1274 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( `' F `  x ) R z  <-> 
( F `  ( `' F `  x ) ) S ( F `
 z ) ) )
8748breq1d 4425 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  ( `' F `  x ) ) S ( F `
 z )  <->  x S
( F `  z
) ) )
8886, 87bitrd 261 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( `' F `  x ) R z  <-> 
x S ( F `
 z ) ) )
8988notbid 300 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  ( -.  ( `' F `  x ) R z  <->  -.  x S ( F `
 z ) ) )
9084, 89bitr4d 264 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
( F `  z
)  e.  { y  e.  Y  |  -.  x S y }  <->  -.  ( `' F `  x ) R z ) )
9179, 80, 903bitr2d 289 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y
)  /\  z  e.  X )  ->  (
z  e.  ( `' F " { y  e.  Y  |  -.  x S y } )  <->  -.  ( `' F `  x ) R z ) )
9291rabbi2dva 3651 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( X  i^i  ( `' F " { y  e.  Y  |  -.  x S y } ) )  =  { z  e.  X  |  -.  ( `' F `  x ) R z } )
9377, 92eqtr3d 2497 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  x S y } )  =  {
z  e.  X  |  -.  ( `' F `  x ) R z } )
947ordtopn2 20259 . . . . . . . 8  |-  ( ( R  e.  V  /\  ( `' F `  x )  e.  X )  ->  { z  e.  X  |  -.  ( `' F `  x ) R z }  e.  (ordTop `  R ) )
9556, 42, 94syl2anc 671 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  { z  e.  X  |  -.  ( `' F `  x ) R z }  e.  (ordTop `  R ) )
9693, 95eqeltrd 2539 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  /\  x  e.  Y )  ->  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R ) )
9796ralrimiva 2813 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) )
98 rabexg 4566 . . . . . . . 8  |-  ( Y  e.  _V  ->  { y  e.  Y  |  -.  x S y }  e.  _V )
9964, 98syl 17 . . . . . . 7  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  { y  e.  Y  |  -.  x S y }  e.  _V )
10099ralrimivw 2814 . . . . . 6  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. x  e.  Y  { y  e.  Y  |  -.  x S y }  e.  _V )
101 eqid 2461 . . . . . . 7  |-  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )  =  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )
102 imaeq2 5182 . . . . . . . 8  |-  ( z  =  { y  e.  Y  |  -.  x S y }  ->  ( `' F " z )  =  ( `' F " { y  e.  Y  |  -.  x S y } ) )
103102eleq1d 2523 . . . . . . 7  |-  ( z  =  { y  e.  Y  |  -.  x S y }  ->  ( ( `' F "
z )  e.  (ordTop `  R )  <->  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) ) )
104101, 103ralrnmpt 6053 . . . . . 6  |-  ( A. x  e.  Y  {
y  e.  Y  |  -.  x S y }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F " z )  e.  (ordTop `  R
)  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) ) )
105100, 104syl 17 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F "
z )  e.  (ordTop `  R )  <->  A. x  e.  Y  ( `' F " { y  e.  Y  |  -.  x S y } )  e.  (ordTop `  R
) ) )
10697, 105mpbird 240 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F "
z )  e.  (ordTop `  R ) )
107 ralunb 3626 . . . 4  |-  ( A. z  e.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ( `' F " z )  e.  (ordTop `  R
)  <->  ( A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } ) ( `' F "
z )  e.  (ordTop `  R )  /\  A. z  e.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ( `' F "
z )  e.  (ordTop `  R ) ) )
10873, 106, 107sylanbrc 675 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ( `' F " z )  e.  (ordTop `  R ) )
109 ralunb 3626 . . 3  |-  ( A. z  e.  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ( `' F "
z )  e.  (ordTop `  R )  <->  ( A. z  e.  { Y }  ( `' F " z )  e.  (ordTop `  R )  /\  A. z  e.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ( `' F " z )  e.  (ordTop `  R
) ) )
11017, 108, 109sylanbrc 675 . 2  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  A. z  e.  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ( `' F " z )  e.  (ordTop `  R
) )
111 eqid 2461 . . . . . . 7  |-  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  y S x }
)  =  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  y S x }
)
112 eqid 2461 . . . . . . 7  |-  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )  =  ran  (
x  e.  Y  |->  { y  e.  Y  |  -.  x S y } )
11361, 111, 112ordtuni 20254 . . . . . 6  |-  ( S  e.  W  ->  Y  =  U. ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) )
114113, 63eqeltrrd 2540 . . . . 5  |-  ( S  e.  W  ->  U. ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
115 uniexb 6627 . . . . 5  |-  ( ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V  <->  U. ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
116114, 115sylibr 217 . . . 4  |-  ( S  e.  W  ->  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
1171163ad2ant2 1036 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) )  e.  _V )
11861, 111, 112ordtval 20253 . . . 4  |-  ( S  e.  W  ->  (ordTop `  S )  =  (
topGen `  ( fi `  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ) ) )
1191183ad2ant2 1036 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  (ordTop `  S
)  =  ( topGen `  ( fi `  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ) ) )
12061ordttopon 20257 . . . 4  |-  ( S  e.  W  ->  (ordTop `  S )  e.  (TopOn `  Y ) )
1211203ad2ant2 1036 . . 3  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  (ordTop `  S
)  e.  (TopOn `  Y ) )
1229, 117, 119, 121subbascn 20318 . 2  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  ( F  e.  ( (ordTop `  R
)  Cn  (ordTop `  S ) )  <->  ( F : X --> Y  /\  A. z  e.  ( { Y }  u.  ( ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  y S x } )  u.  ran  ( x  e.  Y  |->  { y  e.  Y  |  -.  x S y } ) ) ) ( `' F "
z )  e.  (ordTop `  R ) ) ) )
1234, 110, 122mpbir2and 938 1  |-  ( ( R  e.  V  /\  S  e.  W  /\  F  Isom  R ,  S  ( X ,  Y ) )  ->  F  e.  ( (ordTop `  R )  Cn  (ordTop `  S )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897   A.wral 2748   {crab 2752   _Vcvv 3056    u. cun 3413    i^i cin 3414    C_ wss 3415   {csn 3979   U.cuni 4211   class class class wbr 4415    |-> cmpt 4474   `'ccnv 4851   dom cdm 4852   ran crn 4853   "cima 4855    Fn wfn 5595   -->wf 5596   -1-1-onto->wf1o 5599   ` cfv 5600    Isom wiso 5601  (class class class)co 6314   ficfi 7949   topGenctg 15384  ordTopcordt 15445  TopOnctopon 19966    Cn ccn 20288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-iin 4294  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-1st 6819  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-oadd 7211  df-er 7388  df-map 7499  df-en 7595  df-dom 7596  df-fin 7598  df-fi 7950  df-topgen 15390  df-ordt 15447  df-top 19969  df-bases 19970  df-topon 19971  df-cn 20291
This theorem is referenced by:  ordthmeo  20865  xrmulc1cn  28784
  Copyright terms: Public domain W3C validator