MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthaus Structured version   Unicode version

Theorem ordthaus 20331
Description: The order topology of a total order is Hausdorff. (Contributed by Mario Carneiro, 13-Sep-2015.)
Assertion
Ref Expression
ordthaus  |-  ( R  e.  TosetRel  ->  (ordTop `  R )  e.  Haus )

Proof of Theorem ordthaus
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2429 . . . . . 6  |-  dom  R  =  dom  R
21ordthauslem 20330 . . . . 5  |-  ( ( R  e.  TosetRel  /\  x  e.  dom  R  /\  y  e.  dom  R )  -> 
( x R y  ->  ( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R ) ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
31ordthauslem 20330 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  y  e.  dom  R  /\  x  e.  dom  R )  -> 
( y R x  ->  ( y  =/=  x  ->  E. n  e.  (ordTop `  R ) E. m  e.  (ordTop `  R ) ( y  e.  n  /\  x  e.  m  /\  (
n  i^i  m )  =  (/) ) ) ) )
4 necom 2700 . . . . . . . 8  |-  ( y  =/=  x  <->  x  =/=  y )
5 3ancoma 989 . . . . . . . . . . 11  |-  ( ( y  e.  n  /\  x  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  ( x  e.  m  /\  y  e.  n  /\  (
n  i^i  m )  =  (/) ) )
6 incom 3661 . . . . . . . . . . . . 13  |-  ( n  i^i  m )  =  ( m  i^i  n
)
76eqeq1i 2436 . . . . . . . . . . . 12  |-  ( ( n  i^i  m )  =  (/)  <->  ( m  i^i  n )  =  (/) )
873anbi3i 1198 . . . . . . . . . . 11  |-  ( ( x  e.  m  /\  y  e.  n  /\  ( n  i^i  m
)  =  (/) )  <->  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) )
95, 8bitri 252 . . . . . . . . . 10  |-  ( ( y  e.  n  /\  x  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) )
1092rexbii 2935 . . . . . . . . 9  |-  ( E. n  e.  (ordTop `  R ) E. m  e.  (ordTop `  R )
( y  e.  n  /\  x  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. n  e.  (ordTop `  R ) E. m  e.  (ordTop `  R ) ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) )
11 rexcom 2997 . . . . . . . . 9  |-  ( E. n  e.  (ordTop `  R ) E. m  e.  (ordTop `  R )
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R ) ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) )
1210, 11bitri 252 . . . . . . . 8  |-  ( E. n  e.  (ordTop `  R ) E. m  e.  (ordTop `  R )
( y  e.  n  /\  x  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R ) ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) )
134, 12imbi12i 327 . . . . . . 7  |-  ( ( y  =/=  x  ->  E. n  e.  (ordTop `  R ) E. m  e.  (ordTop `  R )
( y  e.  n  /\  x  e.  m  /\  ( n  i^i  m
)  =  (/) ) )  <-> 
( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R )
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
143, 13syl6ib 229 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  y  e.  dom  R  /\  x  e.  dom  R )  -> 
( y R x  ->  ( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R ) ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
15143com23 1211 . . . . 5  |-  ( ( R  e.  TosetRel  /\  x  e.  dom  R  /\  y  e.  dom  R )  -> 
( y R x  ->  ( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R ) ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
161tsrlin 16416 . . . . 5  |-  ( ( R  e.  TosetRel  /\  x  e.  dom  R  /\  y  e.  dom  R )  -> 
( x R y  \/  y R x ) )
172, 15, 16mpjaod 382 . . . 4  |-  ( ( R  e.  TosetRel  /\  x  e.  dom  R  /\  y  e.  dom  R )  -> 
( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R )
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
18173expb 1206 . . 3  |-  ( ( R  e.  TosetRel  /\  (
x  e.  dom  R  /\  y  e.  dom  R ) )  ->  (
x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R )
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
1918ralrimivva 2853 . 2  |-  ( R  e.  TosetRel  ->  A. x  e.  dom  R A. y  e.  dom  R ( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R )
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
201ordttopon 20140 . . 3  |-  ( R  e.  TosetRel  ->  (ordTop `  R )  e.  (TopOn `  dom  R ) )
21 ishaus2 20298 . . 3  |-  ( (ordTop `  R )  e.  (TopOn `  dom  R )  -> 
( (ordTop `  R
)  e.  Haus  <->  A. x  e.  dom  R A. y  e.  dom  R ( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R ) ( x  e.  m  /\  y  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
2220, 21syl 17 . 2  |-  ( R  e.  TosetRel  ->  ( (ordTop `  R )  e.  Haus  <->  A. x  e.  dom  R A. y  e.  dom  R ( x  =/=  y  ->  E. m  e.  (ordTop `  R ) E. n  e.  (ordTop `  R )
( x  e.  m  /\  y  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
2319, 22mpbird 235 1  |-  ( R  e.  TosetRel  ->  (ordTop `  R )  e.  Haus )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ w3a 982    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783    i^i cin 3441   (/)c0 3767   class class class wbr 4426   dom cdm 4854   ` cfv 5601  ordTopcordt 15356    TosetRel ctsr 16396  TopOnctopon 19849   Hauscha 20255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-fin 7581  df-fi 7931  df-topgen 15301  df-ordt 15358  df-ps 16397  df-tsr 16398  df-top 19852  df-bases 19853  df-topon 19854  df-haus 20262
This theorem is referenced by:  xrge0tsms  21763  xrhaus  28191  xrge0tsmsd  28387
  Copyright terms: Public domain W3C validator