MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbaslem Structured version   Unicode version

Theorem ordtbaslem 19448
Description: Lemma for ordtbas 19452. In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
Assertion
Ref Expression
ordtbaslem  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  A )
Distinct variable groups:    x, y, R    x, X, y
Allowed substitution hints:    A( x, y)

Proof of Theorem ordtbaslem
Dummy variables  a 
b  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anrot 973 . . . . . . . . . . . . 13  |-  ( ( y  e.  X  /\  a  e.  X  /\  b  e.  X )  <->  ( a  e.  X  /\  b  e.  X  /\  y  e.  X )
)
2 ordtval.1 . . . . . . . . . . . . . 14  |-  X  =  dom  R
32tsrlemax 15696 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
y  e.  X  /\  a  e.  X  /\  b  e.  X )
)  ->  ( y R if ( a R b ,  b ,  a )  <->  ( y R a  \/  y R b ) ) )
41, 3sylan2br 476 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X  /\  y  e.  X )
)  ->  ( y R if ( a R b ,  b ,  a )  <->  ( y R a  \/  y R b ) ) )
543exp2 1209 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  ( a  e.  X  ->  ( b  e.  X  ->  ( y  e.  X  ->  (
y R if ( a R b ,  b ,  a )  <-> 
( y R a  \/  y R b ) ) ) ) ) )
65imp42 594 . . . . . . . . . 10  |-  ( ( ( R  e.  TosetRel  /\  ( a  e.  X  /\  b  e.  X
) )  /\  y  e.  X )  ->  (
y R if ( a R b ,  b ,  a )  <-> 
( y R a  \/  y R b ) ) )
76notbid 294 . . . . . . . . 9  |-  ( ( ( R  e.  TosetRel  /\  ( a  e.  X  /\  b  e.  X
) )  /\  y  e.  X )  ->  ( -.  y R if ( a R b ,  b ,  a )  <->  -.  ( y R a  \/  y R b ) ) )
8 ioran 490 . . . . . . . . 9  |-  ( -.  ( y R a  \/  y R b )  <->  ( -.  y R a  /\  -.  y R b ) )
97, 8syl6bb 261 . . . . . . . 8  |-  ( ( ( R  e.  TosetRel  /\  ( a  e.  X  /\  b  e.  X
) )  /\  y  e.  X )  ->  ( -.  y R if ( a R b ,  b ,  a )  <-> 
( -.  y R a  /\  -.  y R b ) ) )
109rabbidva 3097 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  =  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) } )
11 ifcl 3974 . . . . . . . . . 10  |-  ( ( b  e.  X  /\  a  e.  X )  ->  if ( a R b ,  b ,  a )  e.  X
)
1211ancoms 453 . . . . . . . . 9  |-  ( ( a  e.  X  /\  b  e.  X )  ->  if ( a R b ,  b ,  a )  e.  X
)
1312adantl 466 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  if (
a R b ,  b ,  a )  e.  X )
14 dmexg 6705 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  dom  R  e.  _V )
152, 14syl5eqel 2552 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  X  e.  _V )
1615adantr 465 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  X  e.  _V )
17 rabexg 4590 . . . . . . . . . 10  |-  ( X  e.  _V  ->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  _V )
1816, 17syl 16 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  _V )
1910, 18eqeltrd 2548 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  _V )
20 eqid 2460 . . . . . . . . . 10  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
21 breq2 4444 . . . . . . . . . . . 12  |-  ( x  =  if ( a R b ,  b ,  a )  -> 
( y R x  <-> 
y R if ( a R b ,  b ,  a ) ) )
2221notbid 294 . . . . . . . . . . 11  |-  ( x  =  if ( a R b ,  b ,  a )  -> 
( -.  y R x  <->  -.  y R if ( a R b ,  b ,  a ) ) )
2322rabbidv 3098 . . . . . . . . . 10  |-  ( x  =  if ( a R b ,  b ,  a )  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) } )
2420, 23elrnmpt1s 5241 . . . . . . . . 9  |-  ( ( if ( a R b ,  b ,  a )  e.  X  /\  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  _V )  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
25 ordtval.2 . . . . . . . . 9  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
2624, 25syl6eleqr 2559 . . . . . . . 8  |-  ( ( if ( a R b ,  b ,  a )  e.  X  /\  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  _V )  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  A )
2713, 19, 26syl2anc 661 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R if ( a R b ,  b ,  a ) }  e.  A )
2810, 27eqeltrrd 2549 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A )
2928ralrimivva 2878 . . . . 5  |-  ( R  e.  TosetRel  ->  A. a  e.  X  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A )
30 rabexg 4590 . . . . . . . 8  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  y R a }  e.  _V )
3115, 30syl 16 . . . . . . 7  |-  ( R  e.  TosetRel  ->  { y  e.  X  |  -.  y R a }  e.  _V )
3231ralrimivw 2872 . . . . . 6  |-  ( R  e.  TosetRel  ->  A. a  e.  X  { y  e.  X  |  -.  y R a }  e.  _V )
33 breq2 4444 . . . . . . . . . 10  |-  ( x  =  a  ->  (
y R x  <->  y R
a ) )
3433notbid 294 . . . . . . . . 9  |-  ( x  =  a  ->  ( -.  y R x  <->  -.  y R a ) )
3534rabbidv 3098 . . . . . . . 8  |-  ( x  =  a  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R a } )
3635cbvmptv 4531 . . . . . . 7  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( a  e.  X  |->  { y  e.  X  |  -.  y R a } )
37 ineq1 3686 . . . . . . . . . 10  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( z  i^i  { y  e.  X  |  -.  y R b } )  =  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  y R b } ) )
38 inrab 3763 . . . . . . . . . 10  |-  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  y R b } )  =  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }
3937, 38syl6eq 2517 . . . . . . . . 9  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( z  i^i  { y  e.  X  |  -.  y R b } )  =  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) } )
4039eleq1d 2529 . . . . . . . 8  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A  <->  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4140ralbidv 2896 . . . . . . 7  |-  ( z  =  { y  e.  X  |  -.  y R a }  ->  ( A. b  e.  X  ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A  <->  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4236, 41ralrnmpt 6021 . . . . . 6  |-  ( A. a  e.  X  {
y  e.  X  |  -.  y R a }  e.  _V  ->  ( A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A  <->  A. a  e.  X  A. b  e.  X  {
y  e.  X  | 
( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4332, 42syl 16 . . . . 5  |-  ( R  e.  TosetRel  ->  ( A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A  <->  A. a  e.  X  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  y R b ) }  e.  A ) )
4429, 43mpbird 232 . . . 4  |-  ( R  e.  TosetRel  ->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
)
45 rabexg 4590 . . . . . . . 8  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  y R b }  e.  _V )
4615, 45syl 16 . . . . . . 7  |-  ( R  e.  TosetRel  ->  { y  e.  X  |  -.  y R b }  e.  _V )
4746ralrimivw 2872 . . . . . 6  |-  ( R  e.  TosetRel  ->  A. b  e.  X  { y  e.  X  |  -.  y R b }  e.  _V )
48 breq2 4444 . . . . . . . . . 10  |-  ( x  =  b  ->  (
y R x  <->  y R
b ) )
4948notbid 294 . . . . . . . . 9  |-  ( x  =  b  ->  ( -.  y R x  <->  -.  y R b ) )
5049rabbidv 3098 . . . . . . . 8  |-  ( x  =  b  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R b } )
5150cbvmptv 4531 . . . . . . 7  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( b  e.  X  |->  { y  e.  X  |  -.  y R b } )
52 ineq2 3687 . . . . . . . 8  |-  ( w  =  { y  e.  X  |  -.  y R b }  ->  ( z  i^i  w )  =  ( z  i^i 
{ y  e.  X  |  -.  y R b } ) )
5352eleq1d 2529 . . . . . . 7  |-  ( w  =  { y  e.  X  |  -.  y R b }  ->  ( ( z  i^i  w
)  e.  A  <->  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
) )
5451, 53ralrnmpt 6021 . . . . . 6  |-  ( A. b  e.  X  {
y  e.  X  |  -.  y R b }  e.  _V  ->  ( A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w )  e.  A  <->  A. b  e.  X  ( z  i^i  {
y  e.  X  |  -.  y R b } )  e.  A ) )
5547, 54syl 16 . . . . 5  |-  ( R  e.  TosetRel  ->  ( A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w
)  e.  A  <->  A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
) )
5655ralbidv 2896 . . . 4  |-  ( R  e.  TosetRel  ->  ( A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w )  e.  A  <->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. b  e.  X  ( z  i^i  { y  e.  X  |  -.  y R b } )  e.  A
) )
5744, 56mpbird 232 . . 3  |-  ( R  e.  TosetRel  ->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w
)  e.  A )
5825raleqi 3055 . . . 4  |-  ( A. w  e.  A  (
z  i^i  w )  e.  A  <->  A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w )  e.  A )
5925, 58raleqbii 2902 . . 3  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  <->  A. z  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) A. w  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ( z  i^i  w
)  e.  A )
6057, 59sylibr 212 . 2  |-  ( R  e.  TosetRel  ->  A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A )
61 pwexg 4624 . . . . 5  |-  ( X  e.  _V  ->  ~P X  e.  _V )
6215, 61syl 16 . . . 4  |-  ( R  e.  TosetRel  ->  ~P X  e. 
_V )
63 ssrab2 3578 . . . . . . . 8  |-  { y  e.  X  |  -.  y R x }  C_  X
6415adantr 465 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  x  e.  X )  ->  X  e.  _V )
65 elpw2g 4603 . . . . . . . . 9  |-  ( X  e.  _V  ->  ( { y  e.  X  |  -.  y R x }  e.  ~P X  <->  { y  e.  X  |  -.  y R x }  C_  X ) )
6664, 65syl 16 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  x  e.  X )  ->  ( { y  e.  X  |  -.  y R x }  e.  ~P X  <->  { y  e.  X  |  -.  y R x }  C_  X ) )
6763, 66mpbiri 233 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  x  e.  X )  ->  { y  e.  X  |  -.  y R x }  e.  ~P X )
6867, 20fmptd 6036 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) : X --> ~P X
)
69 frn 5728 . . . . . 6  |-  ( ( x  e.  X  |->  { y  e.  X  |  -.  y R x }
) : X --> ~P X  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) 
C_  ~P X )
7068, 69syl 16 . . . . 5  |-  ( R  e.  TosetRel  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) 
C_  ~P X )
7125, 70syl5eqss 3541 . . . 4  |-  ( R  e.  TosetRel  ->  A  C_  ~P X )
7262, 71ssexd 4587 . . 3  |-  ( R  e.  TosetRel  ->  A  e.  _V )
73 inficl 7874 . . 3  |-  ( A  e.  _V  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  <->  ( fi `  A )  =  A ) )
7472, 73syl 16 . 2  |-  ( R  e.  TosetRel  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  <->  ( fi `  A )  =  A ) )
7560, 74mpbid 210 1  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   {crab 2811   _Vcvv 3106    i^i cin 3468    C_ wss 3469   ifcif 3932   ~Pcpw 4003   class class class wbr 4440    |-> cmpt 4498   dom cdm 4992   ran crn 4993   -->wf 5575   ` cfv 5579   ficfi 7859    TosetRel ctsr 15675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-fin 7510  df-fi 7860  df-ps 15676  df-tsr 15677
This theorem is referenced by:  ordtbas2  19451
  Copyright terms: Public domain W3C validator