MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas2 Structured version   Unicode version

Theorem ordtbas2 18928
Description: Lemma for ordtbas 18929. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
ordtval.3  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
ordtval.4  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
Assertion
Ref Expression
ordtbas2  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
Distinct variable groups:    a, b, A    x, a, y, R, b    X, a, b, x, y    B, a, b
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y, a, b)

Proof of Theorem ordtbas2
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 3628 . . . . . 6  |-  A  C_  ( A  u.  B
)
2 ssun2 3629 . . . . . . 7  |-  ( A  u.  B )  C_  ( { X }  u.  ( A  u.  B
) )
3 ordtval.1 . . . . . . . . . 10  |-  X  =  dom  R
4 ordtval.2 . . . . . . . . . 10  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
5 ordtval.3 . . . . . . . . . 10  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
63, 4, 5ordtuni 18927 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  =  U. ( { X }  u.  ( A  u.  B
) ) )
7 dmexg 6620 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  dom  R  e.  _V )
83, 7syl5eqel 2546 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  e.  _V )
96, 8eqeltrrd 2543 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  U. ( { X }  u.  ( A  u.  B ) )  e. 
_V )
10 uniexb 6497 . . . . . . . 8  |-  ( ( { X }  u.  ( A  u.  B
) )  e.  _V  <->  U. ( { X }  u.  ( A  u.  B
) )  e.  _V )
119, 10sylibr 212 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( A  u.  B ) )  e. 
_V )
12 ssexg 4547 . . . . . . 7  |-  ( ( ( A  u.  B
)  C_  ( { X }  u.  ( A  u.  B )
)  /\  ( { X }  u.  ( A  u.  B )
)  e.  _V )  ->  ( A  u.  B
)  e.  _V )
132, 11, 12sylancr 663 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  e.  _V )
14 ssexg 4547 . . . . . 6  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
151, 13, 14sylancr 663 . . . . 5  |-  ( R  e.  TosetRel  ->  A  e.  _V )
16 ssun2 3629 . . . . . 6  |-  B  C_  ( A  u.  B
)
17 ssexg 4547 . . . . . 6  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1816, 13, 17sylancr 663 . . . . 5  |-  ( R  e.  TosetRel  ->  B  e.  _V )
19 elfiun 7792 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( z  e.  ( fi `  ( A  u.  B ) )  <-> 
( z  e.  ( fi `  A )  \/  z  e.  ( fi `  B )  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) ) ) )
2015, 18, 19syl2anc 661 . . . 4  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  <->  ( z  e.  ( fi `  A
)  \/  z  e.  ( fi `  B
)  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) ) ) )
213, 4ordtbaslem 18925 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  A )
2221, 1syl6eqss 3515 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  A )  C_  ( A  u.  B )
)
23 ssun1 3628 . . . . . . 7  |-  ( A  u.  B )  C_  ( ( A  u.  B )  u.  C
)
2422, 23syl6ss 3477 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( fi `  A )  C_  (
( A  u.  B
)  u.  C ) )
2524sseld 3464 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  A
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
26 cnvtsr 15512 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  `' R  e.  TosetRel  )
27 df-rn 4960 . . . . . . . . . . 11  |-  ran  R  =  dom  `' R
28 eqid 2454 . . . . . . . . . . 11  |-  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )
2927, 28ordtbaslem 18925 . . . . . . . . . 10  |-  ( `' R  e.  TosetRel  ->  ( fi `  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )  =  ran  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
3026, 29syl 16 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  ( fi `  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } ) )  =  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
31 tsrps 15511 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  R  e.  PosetRel )
323psrn 15499 . . . . . . . . . . . . . 14  |-  ( R  e.  PosetRel  ->  X  =  ran  R )
3331, 32syl 16 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  X  =  ran  R )
34 vex 3081 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
35 vex 3081 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
3634, 35brcnv 5131 . . . . . . . . . . . . . . . . 17  |-  ( y `' R x  <->  x R
y )
3736bicomi 202 . . . . . . . . . . . . . . . 16  |-  ( x R y  <->  y `' R x )
3837notbii 296 . . . . . . . . . . . . . . 15  |-  ( -.  x R y  <->  -.  y `' R x )
3938a1i 11 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( -.  x R y  <->  -.  y `' R x ) )
4033, 39rabeqbidv 3073 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  { y  e.  X  |  -.  x R y }  =  { y  e.  ran  R  |  -.  y `' R x } )
4133, 40mpteq12dv 4479 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
4241rneqd 5176 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
435, 42syl5eq 2507 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  B  =  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } ) )
4443fveq2d 5804 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  ( fi `  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) ) )
4530, 44, 433eqtr4d 2505 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  B )
4645, 16syl6eqss 3515 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  B )  C_  ( A  u.  B )
)
4746, 23syl6ss 3477 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( fi `  B )  C_  (
( A  u.  B
)  u.  C ) )
4847sseld 3464 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  B
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
49 ssun2 3629 . . . . . . . 8  |-  C  C_  ( ( A  u.  B )  u.  C
)
5021, 4syl6eq 2511 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
5150eleq2d 2524 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( m  e.  ( fi `  A
)  <->  m  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ) )
52 vex 3081 . . . . . . . . . . . . . . 15  |-  m  e. 
_V
53 breq2 4405 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
y R x  <->  y R
a ) )
5453notbid 294 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( -.  y R x  <->  -.  y R a ) )
5554rabbidv 3070 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R a } )
5655cbvmptv 4492 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( a  e.  X  |->  { y  e.  X  |  -.  y R a } )
5756elrnmpt 5195 . . . . . . . . . . . . . . 15  |-  ( m  e.  _V  ->  (
m  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
)  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } ) )
5852, 57ax-mp 5 . . . . . . . . . . . . . 14  |-  ( m  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } )
5951, 58syl6bb 261 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  ( m  e.  ( fi `  A
)  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } ) )
6045, 5syl6eq 2511 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
6160eleq2d 2524 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( n  e.  ( fi `  B
)  <->  n  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) ) )
62 vex 3081 . . . . . . . . . . . . . . 15  |-  n  e. 
_V
63 breq1 4404 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  b  ->  (
x R y  <->  b R
y ) )
6463notbid 294 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  ( -.  x R y  <->  -.  b R y ) )
6564rabbidv 3070 . . . . . . . . . . . . . . . . 17  |-  ( x  =  b  ->  { y  e.  X  |  -.  x R y }  =  { y  e.  X  |  -.  b R y } )
6665cbvmptv 4492 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( b  e.  X  |->  { y  e.  X  |  -.  b R y } )
6766elrnmpt 5195 . . . . . . . . . . . . . . 15  |-  ( n  e.  _V  ->  (
n  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) )
6862, 67ax-mp 5 . . . . . . . . . . . . . 14  |-  ( n  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } )
6961, 68syl6bb 261 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  ( n  e.  ( fi `  B
)  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) )
7059, 69anbi12d 710 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  ( ( m  e.  ( fi `  A )  /\  n  e.  ( fi `  B
) )  <->  ( E. a  e.  X  m  =  { y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) ) )
71 reeanv 2994 . . . . . . . . . . . . 13  |-  ( E. a  e.  X  E. b  e.  X  (
m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  <-> 
( E. a  e.  X  m  =  {
y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  {
y  e.  X  |  -.  b R y } ) )
72 ineq12 3656 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  ( m  i^i  n )  =  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } ) )
73 inrab 3731 . . . . . . . . . . . . . . . 16  |-  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }
7472, 73syl6eq 2511 . . . . . . . . . . . . . . 15  |-  ( ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  ( m  i^i  n )  =  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } )
7574reximi 2929 . . . . . . . . . . . . . 14  |-  ( E. b  e.  X  ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7675reximi 2929 . . . . . . . . . . . . 13  |-  ( E. a  e.  X  E. b  e.  X  (
m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7771, 76sylbir 213 . . . . . . . . . . . 12  |-  ( ( E. a  e.  X  m  =  { y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7870, 77syl6bi 228 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  ( ( m  e.  ( fi `  A )  /\  n  e.  ( fi `  B
) )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n )  =  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } ) )
7978imp 429 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8052inex1 4542 . . . . . . . . . . 11  |-  ( m  i^i  n )  e. 
_V
81 eqid 2454 . . . . . . . . . . . 12  |-  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  =  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8281elrnmpt2g 6313 . . . . . . . . . . 11  |-  ( ( m  i^i  n )  e.  _V  ->  (
( m  i^i  n
)  e.  ran  (
a  e.  X , 
b  e.  X  |->  { y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } )  <->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) )
8380, 82ax-mp 5 . . . . . . . . . 10  |-  ( ( m  i^i  n )  e.  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  <->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8479, 83sylibr 212 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) )
85 ordtval.4 . . . . . . . . 9  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8684, 85syl6eleqr 2553 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  C
)
8749, 86sseldi 3463 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  ( ( A  u.  B
)  u.  C ) )
88 eleq1 2526 . . . . . . 7  |-  ( z  =  ( m  i^i  n )  ->  (
z  e.  ( ( A  u.  B )  u.  C )  <->  ( m  i^i  n )  e.  ( ( A  u.  B
)  u.  C ) ) )
8987, 88syl5ibrcom 222 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( z  =  ( m  i^i  n
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9089rexlimdvva 2954 . . . . 5  |-  ( R  e.  TosetRel  ->  ( E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n )  ->  z  e.  ( ( A  u.  B
)  u.  C ) ) )
9125, 48, 903jaod 1283 . . . 4  |-  ( R  e.  TosetRel  ->  ( ( z  e.  ( fi `  A )  \/  z  e.  ( fi `  B
)  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) )  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9220, 91sylbid 215 . . 3  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9392ssrdv 3471 . 2  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  C_  (
( A  u.  B
)  u.  C ) )
94 ssfii 7781 . . . 4  |-  ( ( A  u.  B )  e.  _V  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B )
) )
9513, 94syl 16 . . 3  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B ) ) )
9695adantr 465 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B ) ) )
97 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  a  e.  X )
98 eqidd 2455 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } )
9955eqeq2d 2468 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x }  <->  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } ) )
10099rspcev 3179 . . . . . . . . . . . . . 14  |-  ( ( a  e.  X  /\  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } )  ->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } )
10197, 98, 100syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } )
1028adantr 465 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  X  e.  _V )
103 rabexg 4551 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  y R a }  e.  _V )
104 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
105104elrnmpt 5195 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  |  -.  y R a }  e.  _V  ->  ( { y  e.  X  |  -.  y R a }  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
)  <->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } ) )
106102, 103, 1053syl 20 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  y R a }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  <->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } ) )
107101, 106mpbird 232 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
108107, 4syl6eleqr 2553 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  A )
1091, 108sseldi 3463 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ( A  u.  B
) )
11096, 109sseldd 3466 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ( fi `  ( A  u.  B ) ) )
111 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  b  e.  X )
112 eqidd 2455 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } )
11365eqeq2d 2468 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  ( { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y }  <->  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } ) )
114113rspcev 3179 . . . . . . . . . . . . . 14  |-  ( ( b  e.  X  /\  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } )  ->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } )
115111, 112, 114syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } )
116 rabexg 4551 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  b R y }  e.  _V )
117 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
118117elrnmpt 5195 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  |  -.  b R y }  e.  _V  ->  ( { y  e.  X  |  -.  b R y }  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } ) )
119102, 116, 1183syl 20 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  b R y }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } ) )
120115, 119mpbird 232 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
121120, 5syl6eleqr 2553 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  B )
12216, 121sseldi 3463 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ( A  u.  B
) )
12396, 122sseldd 3466 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ( fi `  ( A  u.  B ) ) )
124 fiin 7784 . . . . . . . . 9  |-  ( ( { y  e.  X  |  -.  y R a }  e.  ( fi
`  ( A  u.  B ) )  /\  { y  e.  X  |  -.  b R y }  e.  ( fi `  ( A  u.  B
) ) )  -> 
( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  e.  ( fi
`  ( A  u.  B ) ) )
125110, 123, 124syl2anc 661 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  e.  ( fi `  ( A  u.  B
) ) )
12673, 125syl5eqelr 2547 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }  e.  ( fi
`  ( A  u.  B ) ) )
127126ralrimivva 2914 . . . . . 6  |-  ( R  e.  TosetRel  ->  A. a  e.  X  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }  e.  ( fi `  ( A  u.  B
) ) )
12881fmpt2 6752 . . . . . 6  |-  ( A. a  e.  X  A. b  e.  X  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) }  e.  ( fi `  ( A  u.  B
) )  <->  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B )
) )
129127, 128sylib 196 . . . . 5  |-  ( R  e.  TosetRel  ->  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B )
) )
130 frn 5674 . . . . 5  |-  ( ( a  e.  X , 
b  e.  X  |->  { y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B ) )  ->  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  C_  ( fi `  ( A  u.  B ) ) )
131129, 130syl 16 . . . 4  |-  ( R  e.  TosetRel  ->  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  C_  ( fi `  ( A  u.  B ) ) )
13285, 131syl5eqss 3509 . . 3  |-  ( R  e.  TosetRel  ->  C  C_  ( fi `  ( A  u.  B ) ) )
13395, 132unssd 3641 . 2  |-  ( R  e.  TosetRel  ->  ( ( A  u.  B )  u.  C )  C_  ( fi `  ( A  u.  B ) ) )
13493, 133eqssd 3482 1  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    = wceq 1370    e. wcel 1758   A.wral 2799   E.wrex 2800   {crab 2803   _Vcvv 3078    u. cun 3435    i^i cin 3436    C_ wss 3437   {csn 3986   U.cuni 4200   class class class wbr 4401    |-> cmpt 4459    X. cxp 4947   `'ccnv 4948   dom cdm 4949   ran crn 4950   -->wf 5523   ` cfv 5527    |-> cmpt2 6203   ficfi 7772   PosetRelcps 15488    TosetRel ctsr 15489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-en 7422  df-fin 7425  df-fi 7773  df-ps 15490  df-tsr 15491
This theorem is referenced by:  ordtbas  18929  leordtval  18950
  Copyright terms: Public domain W3C validator