MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas Structured version   Unicode version

Theorem ordtbas 19487
Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
ordtval.3  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
ordtval.4  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
Assertion
Ref Expression
ordtbas  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  =  ( ( { X }  u.  ( A  u.  B ) )  u.  C ) )
Distinct variable groups:    a, b, A    x, a, y, R, b    X, a, b, x, y    B, a, b
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y, a, b)

Proof of Theorem ordtbas
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4688 . . . . . 6  |-  { X }  e.  _V
2 ssun2 3668 . . . . . . 7  |-  ( A  u.  B )  C_  ( { X }  u.  ( A  u.  B
) )
3 ordtval.1 . . . . . . . . . 10  |-  X  =  dom  R
4 ordtval.2 . . . . . . . . . 10  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
5 ordtval.3 . . . . . . . . . 10  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
63, 4, 5ordtuni 19485 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  =  U. ( { X }  u.  ( A  u.  B
) ) )
7 dmexg 6715 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  dom  R  e.  _V )
83, 7syl5eqel 2559 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  e.  _V )
96, 8eqeltrrd 2556 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  U. ( { X }  u.  ( A  u.  B ) )  e. 
_V )
10 uniexb 6594 . . . . . . . 8  |-  ( ( { X }  u.  ( A  u.  B
) )  e.  _V  <->  U. ( { X }  u.  ( A  u.  B
) )  e.  _V )
119, 10sylibr 212 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( A  u.  B ) )  e. 
_V )
12 ssexg 4593 . . . . . . 7  |-  ( ( ( A  u.  B
)  C_  ( { X }  u.  ( A  u.  B )
)  /\  ( { X }  u.  ( A  u.  B )
)  e.  _V )  ->  ( A  u.  B
)  e.  _V )
132, 11, 12sylancr 663 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  e.  _V )
14 elfiun 7890 . . . . . 6  |-  ( ( { X }  e.  _V  /\  ( A  u.  B )  e.  _V )  ->  ( z  e.  ( fi `  ( { X }  u.  ( A  u.  B )
) )  <->  ( z  e.  ( fi `  { X } )  \/  z  e.  ( fi `  ( A  u.  B )
)  \/  E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n ) ) ) )
151, 13, 14sylancr 663 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( { X }  u.  ( A  u.  B )
) )  <->  ( z  e.  ( fi `  { X } )  \/  z  e.  ( fi `  ( A  u.  B )
)  \/  E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n ) ) ) )
16 fisn 7887 . . . . . . . . 9  |-  ( fi
`  { X }
)  =  { X }
17 ssun1 3667 . . . . . . . . 9  |-  { X }  C_  ( { X }  u.  ( ( A  u.  B )  u.  C ) )
1816, 17eqsstri 3534 . . . . . . . 8  |-  ( fi
`  { X }
)  C_  ( { X }  u.  (
( A  u.  B
)  u.  C ) )
1918sseli 3500 . . . . . . 7  |-  ( z  e.  ( fi `  { X } )  -> 
z  e.  ( { X }  u.  (
( A  u.  B
)  u.  C ) ) )
2019a1i 11 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  { X } )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
21 ordtval.4 . . . . . . . . 9  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
223, 4, 5, 21ordtbas2 19486 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
23 ssun2 3668 . . . . . . . 8  |-  ( ( A  u.  B )  u.  C )  C_  ( { X }  u.  ( ( A  u.  B )  u.  C
) )
2422, 23syl6eqss 3554 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  C_  ( { X }  u.  (
( A  u.  B
)  u.  C ) ) )
2524sseld 3503 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
26 fipwuni 7886 . . . . . . . . . . . . . . 15  |-  ( fi
`  ( A  u.  B ) )  C_  ~P U. ( A  u.  B )
2726sseli 3500 . . . . . . . . . . . . . 14  |-  ( n  e.  ( fi `  ( A  u.  B
) )  ->  n  e.  ~P U. ( A  u.  B ) )
2827elpwid 4020 . . . . . . . . . . . . 13  |-  ( n  e.  ( fi `  ( A  u.  B
) )  ->  n  C_ 
U. ( A  u.  B ) )
2928ad2antll 728 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  C_ 
U. ( A  u.  B ) )
302unissi 4268 . . . . . . . . . . . . . 14  |-  U. ( A  u.  B )  C_ 
U. ( { X }  u.  ( A  u.  B ) )
3130, 6syl5sseqr 3553 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  U. ( A  u.  B )  C_  X
)
3231adantr 465 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  U. ( A  u.  B )  C_  X )
3329, 32sstrd 3514 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  C_  X )
34 simprl 755 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  m  e.  ( fi `  { X } ) )
3534, 16syl6eleq 2565 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  m  e.  { X } )
36 elsni 4052 . . . . . . . . . . . 12  |-  ( m  e.  { X }  ->  m  =  X )
3735, 36syl 16 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  m  =  X )
3833, 37sseqtr4d 3541 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  C_  m )
39 dfss1 3703 . . . . . . . . . 10  |-  ( n 
C_  m  <->  ( m  i^i  n )  =  n )
4038, 39sylib 196 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  (
m  i^i  n )  =  n )
4124sselda 3504 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  n  e.  ( fi `  ( A  u.  B )
) )  ->  n  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
4241adantrl 715 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
4340, 42eqeltrd 2555 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  (
m  i^i  n )  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
44 eleq1 2539 . . . . . . . 8  |-  ( z  =  ( m  i^i  n )  ->  (
z  e.  ( { X }  u.  (
( A  u.  B
)  u.  C ) )  <->  ( m  i^i  n )  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4543, 44syl5ibrcom 222 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  (
z  =  ( m  i^i  n )  -> 
z  e.  ( { X }  u.  (
( A  u.  B
)  u.  C ) ) ) )
4645rexlimdvva 2962 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4720, 25, 463jaod 1292 . . . . 5  |-  ( R  e.  TosetRel  ->  ( ( z  e.  ( fi `  { X } )  \/  z  e.  ( fi
`  ( A  u.  B ) )  \/ 
E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n ) )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4815, 47sylbid 215 . . . 4  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( { X }  u.  ( A  u.  B )
) )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4948ssrdv 3510 . . 3  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  C_  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
50 ssfii 7879 . . . . . 6  |-  ( ( { X }  u.  ( A  u.  B
) )  e.  _V  ->  ( { X }  u.  ( A  u.  B
) )  C_  ( fi `  ( { X }  u.  ( A  u.  B ) ) ) )
5111, 50syl 16 . . . . 5  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( A  u.  B ) )  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
5251unssad 3681 . . . 4  |-  ( R  e.  TosetRel  ->  { X }  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
53 fiss 7884 . . . . . 6  |-  ( ( ( { X }  u.  ( A  u.  B
) )  e.  _V  /\  ( A  u.  B
)  C_  ( { X }  u.  ( A  u.  B )
) )  ->  ( fi `  ( A  u.  B ) )  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
5411, 2, 53sylancl 662 . . . . 5  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  C_  ( fi `  ( { X }  u.  ( A  u.  B ) ) ) )
5522, 54eqsstr3d 3539 . . . 4  |-  ( R  e.  TosetRel  ->  ( ( A  u.  B )  u.  C )  C_  ( fi `  ( { X }  u.  ( A  u.  B ) ) ) )
5652, 55unssd 3680 . . 3  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( ( A  u.  B )  u.  C ) )  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
5749, 56eqssd 3521 . 2  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  =  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
58 unass 3661 . 2  |-  ( ( { X }  u.  ( A  u.  B
) )  u.  C
)  =  ( { X }  u.  (
( A  u.  B
)  u.  C ) )
5957, 58syl6eqr 2526 1  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  =  ( ( { X }  u.  ( A  u.  B ) )  u.  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 972    = wceq 1379    e. wcel 1767   E.wrex 2815   {crab 2818   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   {csn 4027   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   ran crn 5000   ` cfv 5588    |-> cmpt2 6286   ficfi 7870    TosetRel ctsr 15686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520  df-fi 7871  df-ps 15687  df-tsr 15688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator