MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuniel Structured version   Unicode version

Theorem ordsucuniel 6658
Description: Given an element  A of the union of an ordinal  B,  suc  A is an element of  B itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
ordsucuniel  |-  ( Ord 
B  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )

Proof of Theorem ordsucuniel
StepHypRef Expression
1 orduni 6628 . . 3  |-  ( Ord 
B  ->  Ord  U. B
)
2 ordelord 4909 . . . 4  |-  ( ( Ord  U. B  /\  A  e.  U. B )  ->  Ord  A )
32ex 434 . . 3  |-  ( Ord  U. B  ->  ( A  e.  U. B  ->  Ord  A ) )
41, 3syl 16 . 2  |-  ( Ord 
B  ->  ( A  e.  U. B  ->  Ord  A ) )
5 ordelord 4909 . . . 4  |-  ( ( Ord  B  /\  suc  A  e.  B )  ->  Ord  suc  A )
6 ordsuc 6648 . . . 4  |-  ( Ord 
A  <->  Ord  suc  A )
75, 6sylibr 212 . . 3  |-  ( ( Ord  B  /\  suc  A  e.  B )  ->  Ord  A )
87ex 434 . 2  |-  ( Ord 
B  ->  ( suc  A  e.  B  ->  Ord  A ) )
9 ordsson 6624 . . . . . 6  |-  ( Ord 
B  ->  B  C_  On )
10 ordunisssuc 4989 . . . . . 6  |-  ( ( B  C_  On  /\  Ord  A )  ->  ( U. B  C_  A  <->  B  C_  suc  A ) )
119, 10sylan 471 . . . . 5  |-  ( ( Ord  B  /\  Ord  A )  ->  ( U. B  C_  A  <->  B  C_  suc  A ) )
12 ordtri1 4920 . . . . . 6  |-  ( ( Ord  U. B  /\  Ord  A )  ->  ( U. B  C_  A  <->  -.  A  e.  U. B ) )
131, 12sylan 471 . . . . 5  |-  ( ( Ord  B  /\  Ord  A )  ->  ( U. B  C_  A  <->  -.  A  e.  U. B ) )
14 ordtri1 4920 . . . . . 6  |-  ( ( Ord  B  /\  Ord  suc 
A )  ->  ( B  C_  suc  A  <->  -.  suc  A  e.  B ) )
156, 14sylan2b 475 . . . . 5  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  C_ 
suc  A  <->  -.  suc  A  e.  B ) )
1611, 13, 153bitr3d 283 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( -.  A  e.  U. B  <->  -.  suc  A  e.  B ) )
1716con4bid 293 . . 3  |-  ( ( Ord  B  /\  Ord  A )  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )
1817ex 434 . 2  |-  ( Ord 
B  ->  ( Ord  A  ->  ( A  e. 
U. B  <->  suc  A  e.  B ) ) )
194, 8, 18pm5.21ndd 354 1  |-  ( Ord 
B  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1819    C_ wss 3471   U.cuni 4251   Ord word 4886   Oncon0 4887   suc csuc 4889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893
This theorem is referenced by:  dfac12lem1  8540  dfac12lem2  8541  nofulllem5  29662
  Copyright terms: Public domain W3C validator