MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuni Structured version   Unicode version

Theorem ordsucuni 6663
Description: An ordinal class is a subclass of the successor of its union. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
ordsucuni  |-  ( Ord 
A  ->  A  C_  suc  U. A )

Proof of Theorem ordsucuni
StepHypRef Expression
1 ordsson 6624 . 2  |-  ( Ord 
A  ->  A  C_  On )
2 onsucuni 6662 . 2  |-  ( A 
C_  On  ->  A  C_  suc  U. A )
31, 2syl 16 1  |-  ( Ord 
A  ->  A  C_  suc  U. A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    C_ wss 3471   U.cuni 4251   Ord word 4886   Oncon0 4887   suc csuc 4889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893
This theorem is referenced by:  orduniorsuc  6664
  Copyright terms: Public domain W3C validator