MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucss Structured version   Visualization version   Unicode version

Theorem ordsucss 6645
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )

Proof of Theorem ordsucss
StepHypRef Expression
1 ordelord 5445 . . . . 5  |-  ( ( Ord  B  /\  A  e.  B )  ->  Ord  A )
2 ordnbtwn 5513 . . . . . . . 8  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
3 imnan 424 . . . . . . . 8  |-  ( ( A  e.  B  ->  -.  B  e.  suc  A )  <->  -.  ( A  e.  B  /\  B  e. 
suc  A ) )
42, 3sylibr 216 . . . . . . 7  |-  ( Ord 
A  ->  ( A  e.  B  ->  -.  B  e.  suc  A ) )
54adantr 467 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  ->  -.  B  e.  suc  A ) )
6 ordsuc 6641 . . . . . . 7  |-  ( Ord 
A  <->  Ord  suc  A )
7 ordtri1 5456 . . . . . . 7  |-  ( ( Ord  suc  A  /\  Ord  B )  ->  ( suc  A  C_  B  <->  -.  B  e.  suc  A ) )
86, 7sylanb 475 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( suc  A 
C_  B  <->  -.  B  e.  suc  A ) )
95, 8sylibrd 238 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  ->  suc  A  C_  B ) )
101, 9sylan 474 . . . 4  |-  ( ( ( Ord  B  /\  A  e.  B )  /\  Ord  B )  -> 
( A  e.  B  ->  suc  A  C_  B
) )
1110exp31 609 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) ) ) )
1211pm2.43b 52 . 2  |-  ( A  e.  B  ->  ( Ord  B  ->  ( A  e.  B  ->  suc  A  C_  B ) ) )
1312pm2.43b 52 1  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    e. wcel 1887    C_ wss 3404   Ord word 5422   suc csuc 5425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-tr 4498  df-eprel 4745  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-ord 5426  df-on 5427  df-suc 5429
This theorem is referenced by:  ordelsuc  6647  ordsucelsuc  6649  orduniorsuc  6657  tfindsg2  6688  oaordi  7247  oawordeulem  7255  omeulem2  7284  oeworde  7294  oelimcl  7301  oeeui  7303  nnaordi  7319  nnawordex  7338  oaabs2  7346  omxpenlem  7673  inf3lem5  8137  cantnflt  8177  cantnflem1d  8193  cnfcom  8205  r1ordg  8249  rankr1ag  8273  cfslb2n  8698  cfsmolem  8700  fin23lem26  8755  isf32lem3  8785  ttukeylem7  8945  indpi  9332
  Copyright terms: Public domain W3C validator