MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucelsuc Structured version   Unicode version

Theorem ordsucelsuc 6445
Description: Membership is inherited by successors. Generalization of Exercise 9 of [TakeutiZaring] p. 42. (Contributed by NM, 22-Jun-1998.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsucelsuc  |-  ( Ord 
B  ->  ( A  e.  B  <->  suc  A  e.  suc  B ) )

Proof of Theorem ordsucelsuc
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( Ord  B  /\  A  e.  B )  ->  Ord  B )
2 ordelord 4753 . . 3  |-  ( ( Ord  B  /\  A  e.  B )  ->  Ord  A )
31, 2jca 532 . 2  |-  ( ( Ord  B  /\  A  e.  B )  ->  ( Ord  B  /\  Ord  A
) )
4 simpl 457 . . 3  |-  ( ( Ord  B  /\  suc  A  e.  suc  B )  ->  Ord  B )
5 ordsuc 6437 . . . 4  |-  ( Ord 
B  <->  Ord  suc  B )
6 ordelord 4753 . . . . 5  |-  ( ( Ord  suc  B  /\  suc  A  e.  suc  B
)  ->  Ord  suc  A
)
7 ordsuc 6437 . . . . 5  |-  ( Ord 
A  <->  Ord  suc  A )
86, 7sylibr 212 . . . 4  |-  ( ( Ord  suc  B  /\  suc  A  e.  suc  B
)  ->  Ord  A )
95, 8sylanb 472 . . 3  |-  ( ( Ord  B  /\  suc  A  e.  suc  B )  ->  Ord  A )
104, 9jca 532 . 2  |-  ( ( Ord  B  /\  suc  A  e.  suc  B )  ->  ( Ord  B  /\  Ord  A ) )
11 ordsseleq 4760 . . . . . . . 8  |-  ( ( Ord  suc  A  /\  Ord  B )  ->  ( suc  A  C_  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
127, 11sylanb 472 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  ( suc  A 
C_  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
1312ancoms 453 . . . . . 6  |-  ( ( Ord  B  /\  Ord  A )  ->  ( suc  A 
C_  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
1413adantl 466 . . . . 5  |-  ( ( A  e.  _V  /\  ( Ord  B  /\  Ord  A ) )  ->  ( suc  A  C_  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
15 ordsucss 6441 . . . . . . 7  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
1615ad2antrl 727 . . . . . 6  |-  ( ( A  e.  _V  /\  ( Ord  B  /\  Ord  A ) )  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
17 sucssel 4823 . . . . . . 7  |-  ( A  e.  _V  ->  ( suc  A  C_  B  ->  A  e.  B ) )
1817adantr 465 . . . . . 6  |-  ( ( A  e.  _V  /\  ( Ord  B  /\  Ord  A ) )  ->  ( suc  A  C_  B  ->  A  e.  B ) )
1916, 18impbid 191 . . . . 5  |-  ( ( A  e.  _V  /\  ( Ord  B  /\  Ord  A ) )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
20 sucexb 6432 . . . . . . 7  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
21 elsucg 4798 . . . . . . 7  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  suc  B  <-> 
( suc  A  e.  B  \/  suc  A  =  B ) ) )
2220, 21sylbi 195 . . . . . 6  |-  ( A  e.  _V  ->  ( suc  A  e.  suc  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
2322adantr 465 . . . . 5  |-  ( ( A  e.  _V  /\  ( Ord  B  /\  Ord  A ) )  ->  ( suc  A  e.  suc  B  <->  ( suc  A  e.  B  \/  suc  A  =  B ) ) )
2414, 19, 233bitr4d 285 . . . 4  |-  ( ( A  e.  _V  /\  ( Ord  B  /\  Ord  A ) )  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) )
2524ex 434 . . 3  |-  ( A  e.  _V  ->  (
( Ord  B  /\  Ord  A )  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) ) )
26 elex 2993 . . . . 5  |-  ( A  e.  B  ->  A  e.  _V )
27 elex 2993 . . . . . 6  |-  ( suc 
A  e.  suc  B  ->  suc  A  e.  _V )
2827, 20sylibr 212 . . . . 5  |-  ( suc 
A  e.  suc  B  ->  A  e.  _V )
2926, 28pm5.21ni 352 . . . 4  |-  ( -.  A  e.  _V  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) )
3029a1d 25 . . 3  |-  ( -.  A  e.  _V  ->  ( ( Ord  B  /\  Ord  A )  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) ) )
3125, 30pm2.61i 164 . 2  |-  ( ( Ord  B  /\  Ord  A )  ->  ( A  e.  B  <->  suc  A  e.  suc  B ) )
323, 10, 31pm5.21nd 893 1  |-  ( Ord 
B  ->  ( A  e.  B  <->  suc  A  e.  suc  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2984    C_ wss 3340   Ord word 4730   suc csuc 4733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-tr 4398  df-eprel 4644  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-suc 4737
This theorem is referenced by:  ordsucsssuc  6446  oalimcl  7011  omlimcl  7029  pssnn  7543  cantnflt  7892  cantnfp1lem3  7900  cantnfltOLD  7922  cantnfp1lem3OLD  7926  r1pw  8064  r1pwOLD  8065  rankelpr  8092  rankelop  8093  rankxplim3  8100  infpssrlem4  8487  axdc3lem2  8632  axdc3lem4  8634  grur1a  8998  bnj570  31910  bnj1001  31963
  Copyright terms: Public domain W3C validator