MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc2 Structured version   Visualization version   Unicode version

Theorem ordsssuc2 5511
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsssuc2  |-  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )

Proof of Theorem ordsssuc2
StepHypRef Expression
1 elong 5431 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
21biimprd 227 . . . 4  |-  ( A  e.  _V  ->  ( Ord  A  ->  A  e.  On ) )
32anim1d 568 . . 3  |-  ( A  e.  _V  ->  (
( Ord  A  /\  B  e.  On )  ->  ( A  e.  On  /\  B  e.  On ) ) )
4 onsssuc 5510 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
53, 4syl6 34 . 2  |-  ( A  e.  _V  ->  (
( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
6 annim 427 . . . . 5  |-  ( ( B  e.  On  /\  -.  A  e.  _V ) 
<->  -.  ( B  e.  On  ->  A  e.  _V ) )
7 ssexg 4549 . . . . . . 7  |-  ( ( A  C_  B  /\  B  e.  On )  ->  A  e.  _V )
87ex 436 . . . . . 6  |-  ( A 
C_  B  ->  ( B  e.  On  ->  A  e.  _V ) )
9 elex 3054 . . . . . . 7  |-  ( A  e.  suc  B  ->  A  e.  _V )
109a1d 26 . . . . . 6  |-  ( A  e.  suc  B  -> 
( B  e.  On  ->  A  e.  _V )
)
118, 10pm5.21ni 354 . . . . 5  |-  ( -.  ( B  e.  On  ->  A  e.  _V )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
126, 11sylbi 199 . . . 4  |-  ( ( B  e.  On  /\  -.  A  e.  _V )  ->  ( A  C_  B 
<->  A  e.  suc  B
) )
1312expcom 437 . . 3  |-  ( -.  A  e.  _V  ->  ( B  e.  On  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
1413adantld 469 . 2  |-  ( -.  A  e.  _V  ->  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
155, 14pm2.61i 168 1  |-  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    e. wcel 1887   _Vcvv 3045    C_ wss 3404   Ord word 5422   Oncon0 5423   suc csuc 5425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-tr 4498  df-eprel 4745  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-ord 5426  df-on 5427  df-suc 5429
This theorem is referenced by:  ordunisuc2  6671
  Copyright terms: Public domain W3C validator