Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordpss Structured version   Unicode version

Theorem ordpss 31314
Description: ordelpss 4896 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordpss  |-  ( Ord 
B  ->  ( A  e.  B  ->  A  C.  B ) )

Proof of Theorem ordpss
StepHypRef Expression
1 ordelord 4890 . . . 4  |-  ( ( Ord  B  /\  A  e.  B )  ->  Ord  A )
21ex 434 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  Ord  A
) )
32ancrd 554 . 2  |-  ( Ord 
B  ->  ( A  e.  B  ->  ( Ord 
A  /\  A  e.  B ) ) )
4 ordelpss 4896 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  A  C.  B ) )
54ancoms 453 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( A  e.  B  <->  A  C.  B ) )
65biimpd 207 . . 3  |-  ( ( Ord  B  /\  Ord  A )  ->  ( A  e.  B  ->  A  C.  B ) )
76expimpd 603 . 2  |-  ( Ord 
B  ->  ( ( Ord  A  /\  A  e.  B )  ->  A  C.  B ) )
83, 7syld 44 1  |-  ( Ord 
B  ->  ( A  e.  B  ->  A  C.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1804    C. wpss 3462   Ord word 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator