MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpipq Unicode version

Theorem ordpipq 8775
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpipq  |-  ( <. A ,  B >.  <pQ  <. C ,  D >.  <->  ( A  .N  D )  <N 
( C  .N  B
) )

Proof of Theorem ordpipq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4387 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4387 . . 3  |-  <. C ,  D >.  e.  _V
3 eleq1 2464 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( N.  X.  N. ) 
<-> 
<. A ,  B >.  e.  ( N.  X.  N. ) ) )
43anbi1d 686 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  <->  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) ) )
54anbi1d 686 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) )  <-> 
( ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ) )
6 fveq2 5687 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
7 opelxp 4867 . . . . . . . . . 10  |-  ( <. A ,  B >.  e.  ( N.  X.  N. ) 
<->  ( A  e.  N.  /\  B  e.  N. )
)
8 op1stg 6318 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
97, 8sylbi 188 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
109adantr 452 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  ->  ( 1st ` 
<. A ,  B >. )  =  A )
116, 10sylan9eq 2456 . . . . . . 7  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( 1st `  x )  =  A )
1211oveq1d 6055 . . . . . 6  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( ( 1st `  x )  .N  ( 2nd `  y
) )  =  ( A  .N  ( 2nd `  y ) ) )
13 fveq2 5687 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
14 op2ndg 6319 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
157, 14sylbi 188 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
1615adantr 452 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  ->  ( 2nd ` 
<. A ,  B >. )  =  B )
1713, 16sylan9eq 2456 . . . . . . 7  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( 2nd `  x )  =  B )
1817oveq2d 6056 . . . . . 6  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( ( 1st `  y )  .N  ( 2nd `  x
) )  =  ( ( 1st `  y
)  .N  B ) )
1912, 18breq12d 4185 . . . . 5  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) )  <->  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) )
2019pm5.32da 623 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( ( 1st `  x )  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) )  <-> 
( ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) ) )
215, 20bitrd 245 . . 3  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) )  <-> 
( ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) ) )
22 eleq1 2464 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( N.  X.  N. ) 
<-> 
<. C ,  D >.  e.  ( N.  X.  N. ) ) )
2322anbi2d 685 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  <->  ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. )
) ) )
2423anbi1d 686 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) )  <->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) ) )
25 fveq2 5687 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( 2nd `  y
)  =  ( 2nd `  <. C ,  D >. ) )
26 opelxp 4867 . . . . . . . . . 10  |-  ( <. C ,  D >.  e.  ( N.  X.  N. ) 
<->  ( C  e.  N.  /\  D  e.  N. )
)
27 op2ndg 6319 . . . . . . . . . 10  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
2826, 27sylbi 188 . . . . . . . . 9  |-  ( <. C ,  D >.  e.  ( N.  X.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
2928adantl 453 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( 2nd `  <. C ,  D >. )  =  D )
3025, 29sylan9eq 2456 . . . . . . 7  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( 2nd `  y
)  =  D )
3130oveq2d 6056 . . . . . 6  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( A  .N  ( 2nd `  y ) )  =  ( A  .N  D ) )
32 fveq2 5687 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( 1st `  y
)  =  ( 1st `  <. C ,  D >. ) )
33 op1stg 6318 . . . . . . . . . 10  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
3426, 33sylbi 188 . . . . . . . . 9  |-  ( <. C ,  D >.  e.  ( N.  X.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
3534adantl 453 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( 1st `  <. C ,  D >. )  =  C )
3632, 35sylan9eq 2456 . . . . . . 7  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( 1st `  y
)  =  C )
3736oveq1d 6055 . . . . . 6  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( ( 1st `  y
)  .N  B )  =  ( C  .N  B ) )
3831, 37breq12d 4185 . . . . 5  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( ( A  .N  ( 2nd `  y ) )  <N  ( ( 1st `  y )  .N  B )  <->  ( A  .N  D )  <N  ( C  .N  B ) ) )
3938pm5.32da 623 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) )  <->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  D )  <N 
( C  .N  B
) ) ) )
4024, 39bitrd 245 . . 3  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) )  <->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  D )  <N 
( C  .N  B
) ) ) )
41 df-ltpq 8743 . . 3  |-  <pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
421, 2, 21, 40, 41brab 4437 . 2  |-  ( <. A ,  B >.  <pQ  <. C ,  D >.  <->  (
( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N. 
X.  N. ) )  /\  ( A  .N  D
)  <N  ( C  .N  B ) ) )
43 simpr 448 . . 3  |-  ( ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N. 
X.  N. ) )  /\  ( A  .N  D
)  <N  ( C  .N  B ) )  -> 
( A  .N  D
)  <N  ( C  .N  B ) )
44 ltrelpi 8722 . . . . . 6  |-  <N  C_  ( N.  X.  N. )
4544brel 4885 . . . . 5  |-  ( ( A  .N  D ) 
<N  ( C  .N  B
)  ->  ( ( A  .N  D )  e. 
N.  /\  ( C  .N  B )  e.  N. ) )
46 dmmulpi 8724 . . . . . . 7  |-  dom  .N  =  ( N.  X.  N. )
47 0npi 8715 . . . . . . 7  |-  -.  (/)  e.  N.
4846, 47ndmovrcl 6192 . . . . . 6  |-  ( ( A  .N  D )  e.  N.  ->  ( A  e.  N.  /\  D  e.  N. ) )
4946, 47ndmovrcl 6192 . . . . . 6  |-  ( ( C  .N  B )  e.  N.  ->  ( C  e.  N.  /\  B  e.  N. ) )
5048, 49anim12i 550 . . . . 5  |-  ( ( ( A  .N  D
)  e.  N.  /\  ( C  .N  B
)  e.  N. )  ->  ( ( A  e. 
N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. ) ) )
51 opelxpi 4869 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
5251ad2ant2rl 730 . . . . . 6  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  <. A ,  B >.  e.  ( N. 
X.  N. ) )
53 simprl 733 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  C  e.  N. )
54 simplr 732 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  D  e.  N. )
55 opelxpi 4869 . . . . . . 7  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
5653, 54, 55syl2anc 643 . . . . . 6  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  <. C ,  D >.  e.  ( N. 
X.  N. ) )
5752, 56jca 519 . . . . 5  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )
5845, 50, 573syl 19 . . . 4  |-  ( ( A  .N  D ) 
<N  ( C  .N  B
)  ->  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )
5958ancri 536 . . 3  |-  ( ( A  .N  D ) 
<N  ( C  .N  B
)  ->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  D )  <N 
( C  .N  B
) ) )
6043, 59impbii 181 . 2  |-  ( ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N. 
X.  N. ) )  /\  ( A  .N  D
)  <N  ( C  .N  B ) )  <->  ( A  .N  D )  <N  ( C  .N  B ) )
6142, 60bitri 241 1  |-  ( <. A ,  B >.  <pQ  <. C ,  D >.  <->  ( A  .N  D )  <N 
( C  .N  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   <.cop 3777   class class class wbr 4172    X. cxp 4835   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   N.cnpi 8675    .N cmi 8677    <N clti 8678    <pQ cltpq 8681
This theorem is referenced by:  ordpinq  8776  lterpq  8803  ltanq  8804  ltmnq  8805  1lt2nq  8806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-omul 6688  df-ni 8705  df-mi 8707  df-lti 8708  df-ltpq 8743
  Copyright terms: Public domain W3C validator