MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpipq Structured version   Unicode version

Theorem ordpipq 9320
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpipq  |-  ( <. A ,  B >.  <pQ  <. C ,  D >.  <->  ( A  .N  D )  <N 
( C  .N  B
) )

Proof of Theorem ordpipq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4711 . . 3  |-  <. A ,  B >.  e.  _V
2 opex 4711 . . 3  |-  <. C ,  D >.  e.  _V
3 eleq1 2539 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( N.  X.  N. ) 
<-> 
<. A ,  B >.  e.  ( N.  X.  N. ) ) )
43anbi1d 704 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  <->  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) ) )
54anbi1d 704 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) )  <-> 
( ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) ) )
6 fveq2 5866 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( 1st `  x
)  =  ( 1st `  <. A ,  B >. ) )
7 opelxp 5029 . . . . . . . . . 10  |-  ( <. A ,  B >.  e.  ( N.  X.  N. ) 
<->  ( A  e.  N.  /\  B  e.  N. )
)
8 op1stg 6796 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
97, 8sylbi 195 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( 1st `  <. A ,  B >. )  =  A )
109adantr 465 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  ->  ( 1st ` 
<. A ,  B >. )  =  A )
116, 10sylan9eq 2528 . . . . . . 7  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( 1st `  x )  =  A )
1211oveq1d 6299 . . . . . 6  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( ( 1st `  x )  .N  ( 2nd `  y
) )  =  ( A  .N  ( 2nd `  y ) ) )
13 fveq2 5866 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  B >. ) )
14 op2ndg 6797 . . . . . . . . . 10  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
157, 14sylbi 195 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( N.  X.  N. )  ->  ( 2nd `  <. A ,  B >. )  =  B )
1615adantr 465 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  ->  ( 2nd ` 
<. A ,  B >. )  =  B )
1713, 16sylan9eq 2528 . . . . . . 7  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( 2nd `  x )  =  B )
1817oveq2d 6300 . . . . . 6  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( ( 1st `  y )  .N  ( 2nd `  x
) )  =  ( ( 1st `  y
)  .N  B ) )
1912, 18breq12d 4460 . . . . 5  |-  ( ( x  =  <. A ,  B >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) ) )  ->  ( (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) )  <->  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) )
2019pm5.32da 641 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( ( 1st `  x )  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) )  <-> 
( ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) ) )
215, 20bitrd 253 . . 3  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) )  <-> 
( ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) ) )
22 eleq1 2539 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( N.  X.  N. ) 
<-> 
<. C ,  D >.  e.  ( N.  X.  N. ) ) )
2322anbi2d 703 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  <->  ( <. A ,  B >.  e.  ( N. 
X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. )
) ) )
2423anbi1d 704 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) )  <->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) ) ) )
25 fveq2 5866 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( 2nd `  y
)  =  ( 2nd `  <. C ,  D >. ) )
26 opelxp 5029 . . . . . . . . . 10  |-  ( <. C ,  D >.  e.  ( N.  X.  N. ) 
<->  ( C  e.  N.  /\  D  e.  N. )
)
27 op2ndg 6797 . . . . . . . . . 10  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
2826, 27sylbi 195 . . . . . . . . 9  |-  ( <. C ,  D >.  e.  ( N.  X.  N. )  ->  ( 2nd `  <. C ,  D >. )  =  D )
2928adantl 466 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( 2nd `  <. C ,  D >. )  =  D )
3025, 29sylan9eq 2528 . . . . . . 7  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( 2nd `  y
)  =  D )
3130oveq2d 6300 . . . . . 6  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( A  .N  ( 2nd `  y ) )  =  ( A  .N  D ) )
32 fveq2 5866 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( 1st `  y
)  =  ( 1st `  <. C ,  D >. ) )
33 op1stg 6796 . . . . . . . . . 10  |-  ( ( C  e.  N.  /\  D  e.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
3426, 33sylbi 195 . . . . . . . . 9  |-  ( <. C ,  D >.  e.  ( N.  X.  N. )  ->  ( 1st `  <. C ,  D >. )  =  C )
3534adantl 466 . . . . . . . 8  |-  ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  ->  ( 1st `  <. C ,  D >. )  =  C )
3632, 35sylan9eq 2528 . . . . . . 7  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( 1st `  y
)  =  C )
3736oveq1d 6299 . . . . . 6  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( ( 1st `  y
)  .N  B )  =  ( C  .N  B ) )
3831, 37breq12d 4460 . . . . 5  |-  ( ( y  =  <. C ,  D >.  /\  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )  -> 
( ( A  .N  ( 2nd `  y ) )  <N  ( ( 1st `  y )  .N  B )  <->  ( A  .N  D )  <N  ( C  .N  B ) ) )
3938pm5.32da 641 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) )  <->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  D )  <N 
( C  .N  B
) ) ) )
4024, 39bitrd 253 . . 3  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. )
)  /\  ( A  .N  ( 2nd `  y
) )  <N  (
( 1st `  y
)  .N  B ) )  <->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  D )  <N 
( C  .N  B
) ) ) )
41 df-ltpq 9288 . . 3  |-  <pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  (
( 1st `  x
)  .N  ( 2nd `  y ) )  <N 
( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
421, 2, 21, 40, 41brab 4770 . 2  |-  ( <. A ,  B >.  <pQ  <. C ,  D >.  <->  (
( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N. 
X.  N. ) )  /\  ( A  .N  D
)  <N  ( C  .N  B ) ) )
43 simpr 461 . . 3  |-  ( ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N. 
X.  N. ) )  /\  ( A  .N  D
)  <N  ( C  .N  B ) )  -> 
( A  .N  D
)  <N  ( C  .N  B ) )
44 ltrelpi 9267 . . . . . 6  |-  <N  C_  ( N.  X.  N. )
4544brel 5048 . . . . 5  |-  ( ( A  .N  D ) 
<N  ( C  .N  B
)  ->  ( ( A  .N  D )  e. 
N.  /\  ( C  .N  B )  e.  N. ) )
46 dmmulpi 9269 . . . . . . 7  |-  dom  .N  =  ( N.  X.  N. )
47 0npi 9260 . . . . . . 7  |-  -.  (/)  e.  N.
4846, 47ndmovrcl 6445 . . . . . 6  |-  ( ( A  .N  D )  e.  N.  ->  ( A  e.  N.  /\  D  e.  N. ) )
4946, 47ndmovrcl 6445 . . . . . 6  |-  ( ( C  .N  B )  e.  N.  ->  ( C  e.  N.  /\  B  e.  N. ) )
5048, 49anim12i 566 . . . . 5  |-  ( ( ( A  .N  D
)  e.  N.  /\  ( C  .N  B
)  e.  N. )  ->  ( ( A  e. 
N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. ) ) )
51 opelxpi 5031 . . . . . . 7  |-  ( ( A  e.  N.  /\  B  e.  N. )  -> 
<. A ,  B >.  e.  ( N.  X.  N. ) )
5251ad2ant2rl 748 . . . . . 6  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  <. A ,  B >.  e.  ( N. 
X.  N. ) )
53 simprl 755 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  C  e.  N. )
54 simplr 754 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  D  e.  N. )
55 opelxpi 5031 . . . . . . 7  |-  ( ( C  e.  N.  /\  D  e.  N. )  -> 
<. C ,  D >.  e.  ( N.  X.  N. ) )
5653, 54, 55syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  <. C ,  D >.  e.  ( N. 
X.  N. ) )
5752, 56jca 532 . . . . 5  |-  ( ( ( A  e.  N.  /\  D  e.  N. )  /\  ( C  e.  N.  /\  B  e.  N. )
)  ->  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )
5845, 50, 573syl 20 . . . 4  |-  ( ( A  .N  D ) 
<N  ( C  .N  B
)  ->  ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) ) )
5958ancri 552 . . 3  |-  ( ( A  .N  D ) 
<N  ( C  .N  B
)  ->  ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N.  X.  N. ) )  /\  ( A  .N  D )  <N 
( C  .N  B
) ) )
6043, 59impbii 188 . 2  |-  ( ( ( <. A ,  B >.  e.  ( N.  X.  N. )  /\  <. C ,  D >.  e.  ( N. 
X.  N. ) )  /\  ( A  .N  D
)  <N  ( C  .N  B ) )  <->  ( A  .N  D )  <N  ( C  .N  B ) )
6142, 60bitri 249 1  |-  ( <. A ,  B >.  <pQ  <. C ,  D >.  <->  ( A  .N  D )  <N 
( C  .N  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   <.cop 4033   class class class wbr 4447    X. cxp 4997   ` cfv 5588  (class class class)co 6284   1stc1st 6782   2ndc2nd 6783   N.cnpi 9222    .N cmi 9224    <N clti 9225    <pQ cltpq 9228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-omul 7135  df-ni 9250  df-mi 9252  df-lti 9253  df-ltpq 9288
This theorem is referenced by:  ordpinq  9321  lterpq  9348  ltanq  9349  ltmnq  9350  1lt2nq  9351
  Copyright terms: Public domain W3C validator