MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordi Structured version   Unicode version

Theorem ordi 867
Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 28-Nov-2013.)
Assertion
Ref Expression
ordi  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )
) )

Proof of Theorem ordi
StepHypRef Expression
1 jcab 866 . 2  |-  ( ( -.  ph  ->  ( ps 
/\  ch ) )  <->  ( ( -.  ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )
2 df-or 370 . 2  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  <->  ( -.  ph 
->  ( ps  /\  ch ) ) )
3 df-or 370 . . 3  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
4 df-or 370 . . 3  |-  ( (
ph  \/  ch )  <->  ( -.  ph  ->  ch )
)
53, 4anbi12i 697 . 2  |-  ( ( ( ph  \/  ps )  /\  ( ph  \/  ch ) )  <->  ( ( -.  ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )
61, 2, 53bitr4i 279 1  |-  ( (
ph  \/  ( ps  /\ 
ch ) )  <->  ( ( ph  \/  ps )  /\  ( ph  \/  ch )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    \/ wo 368    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371
This theorem is referenced by:  ordir  868  orddi  872  pm5.63  927  pm4.43  930  cadan  1476  undi  3699  undif4  3828  elnn1uz2  11205  or3di  27793  ifpan23  35563  ifpidg  35595  ifpim123g  35604
  Copyright terms: Public domain W3C validator