Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orderseqlem Unicode version

Theorem orderseqlem 25466
Description: Lemma for poseq 25467 and soseq 25468. The function value of a sequene is either in  A or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1  |-  F  =  { f  |  E. x  e.  On  f : x --> A }
Assertion
Ref Expression
orderseqlem  |-  ( G  e.  F  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) )
Distinct variable groups:    A, f, x    f, G, x    x, X
Allowed substitution hints:    F( x, f)    X( f)

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 5535 . . . . 5  |-  ( f  =  G  ->  (
f : x --> A  <->  G :
x --> A ) )
21rexbidv 2687 . . . 4  |-  ( f  =  G  ->  ( E. x  e.  On  f : x --> A  <->  E. x  e.  On  G : x --> A ) )
3 orderseqlem.1 . . . 4  |-  F  =  { f  |  E. x  e.  On  f : x --> A }
42, 3elab2g 3044 . . 3  |-  ( G  e.  F  ->  ( G  e.  F  <->  E. x  e.  On  G : x --> A ) )
54ibi 233 . 2  |-  ( G  e.  F  ->  E. x  e.  On  G : x --> A )
6 frn 5556 . . . . 5  |-  ( G : x --> A  ->  ran  G  C_  A )
7 unss1 3476 . . . . 5  |-  ( ran 
G  C_  A  ->  ( ran  G  u.  { (/)
} )  C_  ( A  u.  { (/) } ) )
86, 7syl 16 . . . 4  |-  ( G : x --> A  -> 
( ran  G  u.  {
(/) } )  C_  ( A  u.  { (/) } ) )
9 fvrn0 5712 . . . 4  |-  ( G `
 X )  e.  ( ran  G  u.  {
(/) } )
10 ssel 3302 . . . 4  |-  ( ( ran  G  u.  { (/)
} )  C_  ( A  u.  { (/) } )  ->  ( ( G `
 X )  e.  ( ran  G  u.  {
(/) } )  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) ) )
118, 9, 10ee10 1382 . . 3  |-  ( G : x --> A  -> 
( G `  X
)  e.  ( A  u.  { (/) } ) )
1211rexlimivw 2786 . 2  |-  ( E. x  e.  On  G : x --> A  -> 
( G `  X
)  e.  ( A  u.  { (/) } ) )
135, 12syl 16 1  |-  ( G  e.  F  ->  ( G `  X )  e.  ( A  u.  { (/)
} ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   {cab 2390   E.wrex 2667    u. cun 3278    C_ wss 3280   (/)c0 3588   {csn 3774   Oncon0 4541   ran crn 4838   -->wf 5409   ` cfv 5413
This theorem is referenced by:  poseq  25467  soseq  25468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421
  Copyright terms: Public domain W3C validator