Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALTVD Structured version   Unicode version

Theorem ordelordALTVD 32747
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 4900 using the Axiom of Regularity indirectly through dford2 8033. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that  _E  Fr  A because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 32388 is ordelordALTVD 32747 without virtual deductions and was automatically derived from ordelordALTVD 32747 using the tools program translate..without..overwriting.cmd and Metamath's minimize command.
1::  |-  (. ( Ord  A  /\  B  e.  A )  ->.  ( Ord  A  /\  B  e.  A ) ).
2:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  A ).
3:1:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  e.  A ).
4:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  A ).
5:2:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
6:4,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  C_  A ).
7:6,6,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  B  A. y  e.  B ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
8::  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
9:8:  |-  A. y ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
10:9:  |-  A. y  e.  A ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
11:10:  |-  ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
12:11:  |-  A. x ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
13:12:  |-  A. x  e.  A ( A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
14:13:  |-  ( A. x  e.  A A. y  e.  A ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
15:14,5:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
16:4,15,3:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  B ).
17:16,7:  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  B ).
qed:17:  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALTVD  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelordALTVD
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 32431 . . . . . 6  |-  (. ( Ord  A  /\  B  e.  A )  ->.  ( Ord  A  /\  B  e.  A
) ).
2 simpl 457 . . . . . 6  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  A )
31, 2e1a 32493 . . . . 5  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  A ).
4 ordtr 4892 . . . . 5  |-  ( Ord 
A  ->  Tr  A
)
53, 4e1a 32493 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  A ).
6 dford2 8033 . . . . . . 7  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
76simprbi 464 . . . . . 6  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
83, 7e1a 32493 . . . . 5  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
9 3orcomb 983 . . . . . . . . . . 11  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
109ax-gen 1601 . . . . . . . . . 10  |-  A. y
( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
11 alral 2829 . . . . . . . . . 10  |-  ( A. y ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  ->  A. y  e.  A  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ) )
1210, 11e0a 32649 . . . . . . . . 9  |-  A. y  e.  A  ( (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
13 ralbi 2993 . . . . . . . . 9  |-  ( A. y  e.  A  (
( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  -> 
( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ) )
1412, 13e0a 32649 . . . . . . . 8  |-  ( A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
1514ax-gen 1601 . . . . . . 7  |-  A. x
( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
16 alral 2829 . . . . . . 7  |-  ( A. x ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )  ->  A. x  e.  A  ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
1715, 16e0a 32649 . . . . . 6  |-  A. x  e.  A  ( A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
18 ralbi 2993 . . . . . 6  |-  ( A. x  e.  A  ( A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
1917, 18e0a 32649 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
208, 19e1bi 32495 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) ).
21 simpr 461 . . . . 5  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  A )
221, 21e1a 32493 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  e.  A ).
23 tratrb 32386 . . . . 5  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  B
)
24233exp 1195 . . . 4  |-  ( Tr  A  ->  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  ->  ( B  e.  A  ->  Tr  B
) ) )
255, 20, 22, 24e111 32540 . . 3  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Tr  B ).
26 trss 4549 . . . . 5  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
275, 22, 26e11 32554 . . . 4  |-  (. ( Ord  A  /\  B  e.  A )  ->.  B  C_  A ).
28 ssralv2 32380 . . . . 5  |-  ( ( B  C_  A  /\  B  C_  A )  -> 
( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
2928ex 434 . . . 4  |-  ( B 
C_  A  ->  ( B  C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) ) )
3027, 27, 8, 29e111 32540 . . 3  |-  (. ( Ord  A  /\  B  e.  A )  ->.  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ).
31 dford2 8033 . . . 4  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
3231simplbi2 625 . . 3  |-  ( Tr  B  ->  ( A. x  e.  B  A. y  e.  B  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  Ord  B )
)
3325, 30, 32e11 32554 . 2  |-  (. ( Ord  A  /\  B  e.  A )  ->.  Ord  B ).
3433in1 32428 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 972   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814    C_ wss 3476   Tr wtr 4540   Ord word 4877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574  ax-reg 8014
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-vd1 32427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator