Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordelordALT Unicode version

Theorem ordelordALT 26994
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 4307 using the Axiom of Regularity indirectly through dford2 7205. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that  _E  Fr  A because this is inferred by the Axiom of Regularity. ordelordALT 26994 is ordelordALTVD 27333 without virtual deductions and was automatically derived from ordelordALTVD 27333 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ordelordALT  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelordALT
StepHypRef Expression
1 ordtr 4299 . . . 4  |-  ( Ord 
A  ->  Tr  A
)
21adantr 453 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  Tr  A )
3 dford2 7205 . . . . . 6  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
43simprbi 452 . . . . 5  |-  ( Ord 
A  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
54adantr 453 . . . 4  |-  ( ( Ord  A  /\  B  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
6 3orcomb 949 . . . . 5  |-  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
762ralbii 2533 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
85, 7sylib 190 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
9 simpr 449 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  e.  A )
10 tratrb 26992 . . 3  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  B
)
112, 8, 9, 10syl3anc 1187 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  Tr  B )
12 trss 4019 . . . 4  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
132, 9, 12sylc 58 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )
14 ssralv2 26987 . . . 4  |-  ( ( B  C_  A  /\  B  C_  A )  -> 
( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) )
1514ex 425 . . 3  |-  ( B 
C_  A  ->  ( B  C_  A  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  x  =  y  \/  y  e.  x
)  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) ) ) )
1613, 13, 5, 15syl3c 59 . 2  |-  ( ( Ord  A  /\  B  e.  A )  ->  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )
17 dford2 7205 . 2  |-  ( Ord 
B  <->  ( Tr  B  /\  A. x  e.  B  A. y  e.  B  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) ) )
1811, 16, 17sylanbrc 648 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    \/ w3o 938    e. wcel 1621   A.wral 2509    C_ wss 3078   Tr wtr 4010   Ord word 4284
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-reg 7190
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288
  Copyright terms: Public domain W3C validator