MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelord Structured version   Unicode version

Theorem ordelord 4909
Description: An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. (Contributed by NM, 23-Apr-1994.)
Assertion
Ref Expression
ordelord  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )

Proof of Theorem ordelord
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2529 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21anbi2d 703 . . . 4  |-  ( x  =  B  ->  (
( Ord  A  /\  x  e.  A )  <->  ( Ord  A  /\  B  e.  A ) ) )
3 ordeq 4894 . . . 4  |-  ( x  =  B  ->  ( Ord  x  <->  Ord  B ) )
42, 3imbi12d 320 . . 3  |-  ( x  =  B  ->  (
( ( Ord  A  /\  x  e.  A
)  ->  Ord  x )  <-> 
( ( Ord  A  /\  B  e.  A
)  ->  Ord  B ) ) )
5 simpll 753 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  Ord  A )
6 3anrot 978 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  z  e.  y  /\  y  e.  x )  <->  ( z  e.  y  /\  y  e.  x  /\  x  e.  A )
)
7 3anass 977 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  z  e.  y  /\  y  e.  x )  <->  ( x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) ) )
86, 7bitr3i 251 . . . . . . . . . . 11  |-  ( ( z  e.  y  /\  y  e.  x  /\  x  e.  A )  <->  ( x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) ) )
9 ordtr 4901 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  Tr  A
)
10 trel3 4558 . . . . . . . . . . . 12  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  x  /\  x  e.  A )  ->  z  e.  A ) )
119, 10syl 16 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( (
z  e.  y  /\  y  e.  x  /\  x  e.  A )  ->  z  e.  A ) )
128, 11syl5bir 218 . . . . . . . . . 10  |-  ( Ord 
A  ->  ( (
x  e.  A  /\  ( z  e.  y  /\  y  e.  x
) )  ->  z  e.  A ) )
1312impl 620 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  z  e.  A )
14 trel 4557 . . . . . . . . . . . . 13  |-  ( Tr  A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
159, 14syl 16 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  ( (
y  e.  x  /\  x  e.  A )  ->  y  e.  A ) )
1615expcomd 438 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  A ) ) )
1716imp31 432 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  y  e.  x
)  ->  y  e.  A )
1817adantrl 715 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  y  e.  A )
19 simplr 755 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  x  e.  A )
20 ordwe 4900 . . . . . . . . . 10  |-  ( Ord 
A  ->  _E  We  A )
21 wetrep 4881 . . . . . . . . . 10  |-  ( (  _E  We  A  /\  ( z  e.  A  /\  y  e.  A  /\  x  e.  A
) )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2220, 21sylan 471 . . . . . . . . 9  |-  ( ( Ord  A  /\  (
z  e.  A  /\  y  e.  A  /\  x  e.  A )
)  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
235, 13, 18, 19, 22syl13anc 1230 . . . . . . . 8  |-  ( ( ( Ord  A  /\  x  e.  A )  /\  ( z  e.  y  /\  y  e.  x
) )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2423ex 434 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  A )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
2524pm2.43d 48 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  A )  ->  (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )
2625alrimivv 1721 . . . . 5  |-  ( ( Ord  A  /\  x  e.  A )  ->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
27 dftr2 4552 . . . . 5  |-  ( Tr  x  <->  A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2826, 27sylibr 212 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  Tr  x )
29 trss 4559 . . . . . . 7  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
309, 29syl 16 . . . . . 6  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  C_  A ) )
31 wess 4875 . . . . . 6  |-  ( x 
C_  A  ->  (  _E  We  A  ->  _E  We  x ) )
3230, 20, 31syl6ci 65 . . . . 5  |-  ( Ord 
A  ->  ( x  e.  A  ->  _E  We  x ) )
3332imp 429 . . . 4  |-  ( ( Ord  A  /\  x  e.  A )  ->  _E  We  x )
34 df-ord 4890 . . . 4  |-  ( Ord  x  <->  ( Tr  x  /\  _E  We  x ) )
3528, 33, 34sylanbrc 664 . . 3  |-  ( ( Ord  A  /\  x  e.  A )  ->  Ord  x )
364, 35vtoclg 3167 . 2  |-  ( B  e.  A  ->  (
( Ord  A  /\  B  e.  A )  ->  Ord  B ) )
3736anabsi7 819 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  Ord  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1393    = wceq 1395    e. wcel 1819    C_ wss 3471   Tr wtr 4550    _E cep 4798    We wwe 4846   Ord word 4886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890
This theorem is referenced by:  tron  4910  ordelon  4911  ordtr2  4931  ordtr3  4932  ordintdif  4936  ordsuc  6648  ordsucss  6652  ordsucelsuc  6656  ordsucuniel  6658  limsssuc  6684  smores  7041  smo11  7053  smoord  7054  smoword  7055  smogt  7056  smorndom  7057  rdglim2  7116  oesuclem  7193  ordtypelem3  7963  r1val1  8221  rankr1ag  8237  fin23lem24  8719  onsuct0  30090  dford3  31153  ordpss  31543
  Copyright terms: Public domain W3C validator