MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Structured version   Unicode version

Theorem ordelinel 4985
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
ordelinel  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 4984 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B
) ) )
213adant3 1016 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( A  =  ( A  i^i  B
)  \/  B  =  ( A  i^i  B
) ) )
3 eleq1 2529 . . . . 5  |-  ( A  =  ( A  i^i  B )  ->  ( A  e.  C  <->  ( A  i^i  B )  e.  C ) )
4 orc 385 . . . . 5  |-  ( A  e.  C  ->  ( A  e.  C  \/  B  e.  C )
)
53, 4syl6bir 229 . . . 4  |-  ( A  =  ( A  i^i  B )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
6 eleq1 2529 . . . . 5  |-  ( B  =  ( A  i^i  B )  ->  ( B  e.  C  <->  ( A  i^i  B )  e.  C ) )
7 olc 384 . . . . 5  |-  ( B  e.  C  ->  ( A  e.  C  \/  B  e.  C )
)
86, 7syl6bir 229 . . . 4  |-  ( B  =  ( A  i^i  B )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
95, 8jaoi 379 . . 3  |-  ( ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B ) )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
102, 9syl 16 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
11 inss1 3714 . . . 4  |-  ( A  i^i  B )  C_  A
12 ordin 4917 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
13 ordtr2 4931 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  A  /\  A  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
1412, 13stoic3 1610 . . . 4  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( ( A  i^i  B ) 
C_  A  /\  A  e.  C )  ->  ( A  i^i  B )  e.  C ) )
1511, 14mpani 676 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( A  e.  C  ->  ( A  i^i  B )  e.  C
) )
16 inss2 3715 . . . 4  |-  ( A  i^i  B )  C_  B
17 ordtr2 4931 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  B  /\  B  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
1812, 17stoic3 1610 . . . 4  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( ( A  i^i  B ) 
C_  B  /\  B  e.  C )  ->  ( A  i^i  B )  e.  C ) )
1916, 18mpani 676 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( B  e.  C  ->  ( A  i^i  B )  e.  C
) )
2015, 19jaod 380 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  e.  C  \/  B  e.  C )  ->  ( A  i^i  B )  e.  C ) )
2110, 20impbid 191 1  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    i^i cin 3470    C_ wss 3471   Ord word 4886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890
This theorem is referenced by:  mreexexd  15064
  Copyright terms: Public domain W3C validator