MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Structured version   Unicode version

Theorem ordelinel 4838
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
ordelinel  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 4837 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B
) ) )
213adant3 1008 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( A  =  ( A  i^i  B
)  \/  B  =  ( A  i^i  B
) ) )
3 eleq1 2503 . . . . 5  |-  ( A  =  ( A  i^i  B )  ->  ( A  e.  C  <->  ( A  i^i  B )  e.  C ) )
4 orc 385 . . . . 5  |-  ( A  e.  C  ->  ( A  e.  C  \/  B  e.  C )
)
53, 4syl6bir 229 . . . 4  |-  ( A  =  ( A  i^i  B )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
6 eleq1 2503 . . . . 5  |-  ( B  =  ( A  i^i  B )  ->  ( B  e.  C  <->  ( A  i^i  B )  e.  C ) )
7 olc 384 . . . . 5  |-  ( B  e.  C  ->  ( A  e.  C  \/  B  e.  C )
)
86, 7syl6bir 229 . . . 4  |-  ( B  =  ( A  i^i  B )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
95, 8jaoi 379 . . 3  |-  ( ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B ) )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
102, 9syl 16 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
11 inss1 3591 . . . 4  |-  ( A  i^i  B )  C_  A
12 ordin 4770 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
1312anim1i 568 . . . . . 6  |-  ( ( ( Ord  A  /\  Ord  B )  /\  Ord  C )  ->  ( Ord  ( A  i^i  B )  /\  Ord  C ) )
14133impa 1182 . . . . 5  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( Ord  ( A  i^i  B )  /\  Ord  C ) )
15 ordtr2 4784 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  A  /\  A  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
1614, 15syl 16 . . . 4  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( ( A  i^i  B ) 
C_  A  /\  A  e.  C )  ->  ( A  i^i  B )  e.  C ) )
1711, 16mpani 676 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( A  e.  C  ->  ( A  i^i  B )  e.  C
) )
18 inss2 3592 . . . 4  |-  ( A  i^i  B )  C_  B
19 ordtr2 4784 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  B  /\  B  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
2014, 19syl 16 . . . 4  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( ( A  i^i  B ) 
C_  B  /\  B  e.  C )  ->  ( A  i^i  B )  e.  C ) )
2118, 20mpani 676 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( B  e.  C  ->  ( A  i^i  B )  e.  C
) )
2217, 21jaod 380 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  e.  C  \/  B  e.  C )  ->  ( A  i^i  B )  e.  C ) )
2310, 22impbid 191 1  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    i^i cin 3348    C_ wss 3349   Ord word 4739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-tr 4407  df-eprel 4653  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743
This theorem is referenced by:  mreexexd  14607
  Copyright terms: Public domain W3C validator