Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordcmp Structured version   Unicode version

Theorem ordcmp 29517
Description: An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is  1o. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordcmp  |-  ( Ord 
A  ->  ( A  e.  Comp  <->  ( U. A  =  U. U. A  ->  A  =  1o )
) )

Proof of Theorem ordcmp
StepHypRef Expression
1 orduni 6613 . . . 4  |-  ( Ord 
A  ->  Ord  U. A
)
2 unizlim 4994 . . . . . 6  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  <->  ( U. A  =  (/)  \/ 
Lim  U. A ) ) )
3 uni0b 4270 . . . . . . 7  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )
43orbi1i 520 . . . . . 6  |-  ( ( U. A  =  (/)  \/ 
Lim  U. A )  <->  ( A  C_ 
{ (/) }  \/  Lim  U. A ) )
52, 4syl6bb 261 . . . . 5  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  <->  ( A  C_  { (/) }  \/  Lim  U. A ) ) )
65biimpd 207 . . . 4  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  ->  ( A  C_  { (/) }  \/  Lim  U. A
) ) )
71, 6syl 16 . . 3  |-  ( Ord 
A  ->  ( U. A  =  U. U. A  ->  ( A  C_  { (/) }  \/  Lim  U. A
) ) )
8 sssn 4185 . . . . . . 7  |-  ( A 
C_  { (/) }  <->  ( A  =  (/)  \/  A  =  { (/) } ) )
9 0ntop 19209 . . . . . . . . . . 11  |-  -.  (/)  e.  Top
10 cmptop 19689 . . . . . . . . . . 11  |-  ( (/)  e.  Comp  ->  (/)  e.  Top )
119, 10mto 176 . . . . . . . . . 10  |-  -.  (/)  e.  Comp
12 eleq1 2539 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A  e.  Comp  <->  (/)  e.  Comp )
)
1311, 12mtbiri 303 . . . . . . . . 9  |-  ( A  =  (/)  ->  -.  A  e.  Comp )
1413pm2.21d 106 . . . . . . . 8  |-  ( A  =  (/)  ->  ( A  e.  Comp  ->  A  =  1o ) )
15 id 22 . . . . . . . . . 10  |-  ( A  =  { (/) }  ->  A  =  { (/) } )
16 df1o2 7142 . . . . . . . . . 10  |-  1o  =  { (/) }
1715, 16syl6eqr 2526 . . . . . . . . 9  |-  ( A  =  { (/) }  ->  A  =  1o )
1817a1d 25 . . . . . . . 8  |-  ( A  =  { (/) }  ->  ( A  e.  Comp  ->  A  =  1o ) )
1914, 18jaoi 379 . . . . . . 7  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( A  e.  Comp  ->  A  =  1o )
)
208, 19sylbi 195 . . . . . 6  |-  ( A 
C_  { (/) }  ->  ( A  e.  Comp  ->  A  =  1o ) )
2120a1i 11 . . . . 5  |-  ( Ord 
A  ->  ( A  C_ 
{ (/) }  ->  ( A  e.  Comp  ->  A  =  1o ) ) )
22 ordtop 29506 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( A  e.  Top  <->  A  =/=  U. A
) )
2322biimpd 207 . . . . . . . . . 10  |-  ( Ord 
A  ->  ( A  e.  Top  ->  A  =/=  U. A ) )
2423necon2bd 2682 . . . . . . . . 9  |-  ( Ord 
A  ->  ( A  =  U. A  ->  -.  A  e.  Top )
)
25 cmptop 19689 . . . . . . . . . 10  |-  ( A  e.  Comp  ->  A  e. 
Top )
2625con3i 135 . . . . . . . . 9  |-  ( -.  A  e.  Top  ->  -.  A  e.  Comp )
2724, 26syl6 33 . . . . . . . 8  |-  ( Ord 
A  ->  ( A  =  U. A  ->  -.  A  e.  Comp ) )
2827a1dd 46 . . . . . . 7  |-  ( Ord 
A  ->  ( A  =  U. A  ->  ( Lim  U. A  ->  -.  A  e.  Comp ) ) )
29 limsucncmp 29516 . . . . . . . . 9  |-  ( Lim  U. A  ->  -.  suc  U. A  e.  Comp )
30 eleq1 2539 . . . . . . . . . 10  |-  ( A  =  suc  U. A  ->  ( A  e.  Comp  <->  suc  U. A  e.  Comp )
)
3130notbid 294 . . . . . . . . 9  |-  ( A  =  suc  U. A  ->  ( -.  A  e. 
Comp 
<->  -.  suc  U. A  e.  Comp ) )
3229, 31syl5ibr 221 . . . . . . . 8  |-  ( A  =  suc  U. A  ->  ( Lim  U. A  ->  -.  A  e.  Comp ) )
3332a1i 11 . . . . . . 7  |-  ( Ord 
A  ->  ( A  =  suc  U. A  -> 
( Lim  U. A  ->  -.  A  e.  Comp ) ) )
34 orduniorsuc 6649 . . . . . . 7  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )
3528, 33, 34mpjaod 381 . . . . . 6  |-  ( Ord 
A  ->  ( Lim  U. A  ->  -.  A  e.  Comp ) )
36 pm2.21 108 . . . . . 6  |-  ( -.  A  e.  Comp  ->  ( A  e.  Comp  ->  A  =  1o ) )
3735, 36syl6 33 . . . . 5  |-  ( Ord 
A  ->  ( Lim  U. A  ->  ( A  e.  Comp  ->  A  =  1o ) ) )
3821, 37jaod 380 . . . 4  |-  ( Ord 
A  ->  ( ( A  C_  { (/) }  \/  Lim  U. A )  -> 
( A  e.  Comp  ->  A  =  1o )
) )
3938com23 78 . . 3  |-  ( Ord 
A  ->  ( A  e.  Comp  ->  ( ( A  C_  { (/) }  \/  Lim  U. A )  ->  A  =  1o )
) )
407, 39syl5d 67 . 2  |-  ( Ord 
A  ->  ( A  e.  Comp  ->  ( U. A  =  U. U. A  ->  A  =  1o ) ) )
41 ordeleqon 6608 . . . . . . 7  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
42 unon 6650 . . . . . . . . . . 11  |-  U. On  =  On
4342eqcomi 2480 . . . . . . . . . 10  |-  On  =  U. On
4443unieqi 4254 . . . . . . . . 9  |-  U. On  =  U. U. On
45 unieq 4253 . . . . . . . . 9  |-  ( A  =  On  ->  U. A  =  U. On )
4645unieqd 4255 . . . . . . . . 9  |-  ( A  =  On  ->  U. U. A  =  U. U. On )
4744, 45, 463eqtr4a 2534 . . . . . . . 8  |-  ( A  =  On  ->  U. A  =  U. U. A )
4847orim2i 518 . . . . . . 7  |-  ( ( A  e.  On  \/  A  =  On )  ->  ( A  e.  On  \/  U. A  =  U. U. A ) )
4941, 48sylbi 195 . . . . . 6  |-  ( Ord 
A  ->  ( A  e.  On  \/  U. A  =  U. U. A ) )
5049orcomd 388 . . . . 5  |-  ( Ord 
A  ->  ( U. A  =  U. U. A  \/  A  e.  On ) )
5150ord 377 . . . 4  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  e.  On ) )
52 unieq 4253 . . . . . . 7  |-  ( A  =  U. A  ->  U. A  =  U. U. A )
5352con3i 135 . . . . . 6  |-  ( -. 
U. A  =  U. U. A  ->  -.  A  =  U. A )
5434ord 377 . . . . . 6  |-  ( Ord 
A  ->  ( -.  A  =  U. A  ->  A  =  suc  U. A
) )
5553, 54syl5 32 . . . . 5  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  =  suc  U. A ) )
56 orduniorsuc 6649 . . . . . . . 8  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  \/  U. A  =  suc  U.
U. A ) )
571, 56syl 16 . . . . . . 7  |-  ( Ord 
A  ->  ( U. A  =  U. U. A  \/  U. A  =  suc  U.
U. A ) )
5857ord 377 . . . . . 6  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  U. A  =  suc  U.
U. A ) )
59 suceq 4943 . . . . . 6  |-  ( U. A  =  suc  U. U. A  ->  suc  U. A  =  suc  suc  U. U. A
)
6058, 59syl6 33 . . . . 5  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  suc  U. A  =  suc  suc  U. U. A
) )
61 eqtr 2493 . . . . . 6  |-  ( ( A  =  suc  U. A  /\  suc  U. A  =  suc  suc  U. U. A
)  ->  A  =  suc  suc  U. U. A
)
6261ex 434 . . . . 5  |-  ( A  =  suc  U. A  ->  ( suc  U. A  =  suc  suc  U. U. A  ->  A  =  suc  suc  U.
U. A ) )
6355, 60, 62syl6c 64 . . . 4  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  =  suc  suc  U. U. A ) )
64 onuni 6612 . . . . 5  |-  ( A  e.  On  ->  U. A  e.  On )
65 onuni 6612 . . . . 5  |-  ( U. A  e.  On  ->  U.
U. A  e.  On )
66 onsucsuccmp 29514 . . . . 5  |-  ( U. U. A  e.  On  ->  suc 
suc  U. U. A  e. 
Comp )
67 eleq1a 2550 . . . . 5  |-  ( suc 
suc  U. U. A  e. 
Comp  ->  ( A  =  suc  suc  U. U. A  ->  A  e.  Comp )
)
6864, 65, 66, 674syl 21 . . . 4  |-  ( A  e.  On  ->  ( A  =  suc  suc  U. U. A  ->  A  e.  Comp ) )
6951, 63, 68syl6c 64 . . 3  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  e.  Comp ) )
70 id 22 . . . . . 6  |-  ( A  =  1o  ->  A  =  1o )
7170, 16syl6eq 2524 . . . . 5  |-  ( A  =  1o  ->  A  =  { (/) } )
72 0cmp 19688 . . . . 5  |-  { (/) }  e.  Comp
7371, 72syl6eqel 2563 . . . 4  |-  ( A  =  1o  ->  A  e.  Comp )
7473a1i 11 . . 3  |-  ( Ord 
A  ->  ( A  =  1o  ->  A  e. 
Comp ) )
7569, 74jad 162 . 2  |-  ( Ord 
A  ->  ( ( U. A  =  U. U. A  ->  A  =  1o )  ->  A  e. 
Comp ) )
7640, 75impbid 191 1  |-  ( Ord 
A  ->  ( A  e.  Comp  <->  ( U. A  =  U. U. A  ->  A  =  1o )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    = wceq 1379    e. wcel 1767    =/= wne 2662    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   Ord word 4877   Oncon0 4878   Lim wlim 4879   suc csuc 4880   1oc1o 7123   Topctop 19189   Compccmp 19680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-1o 7130  df-er 7311  df-en 7517  df-fin 7520  df-topgen 14699  df-top 19194  df-bases 19196  df-topon 19197  df-cmp 19681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator