MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcs Structured version   Unicode version

Theorem orcs 394
Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 16) -type inference in a proof. (Contributed by NM, 21-Jun-1994.)
Hypothesis
Ref Expression
orcs.1  |-  ( (
ph  \/  ps )  ->  ch )
Assertion
Ref Expression
orcs  |-  ( ph  ->  ch )

Proof of Theorem orcs
StepHypRef Expression
1 orc 385 . 2  |-  ( ph  ->  ( ph  \/  ps ) )
2 orcs.1 . 2  |-  ( (
ph  \/  ps )  ->  ch )
31, 2syl 16 1  |-  ( ph  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  olcs  395  ifor  3986  tppreqb  4168  frxp  6890  mndifsplit  18905  maducoeval2  18909  leibpilem2  23000  leibpi  23001  3o1cs  27045  3o2cs  27046
  Copyright terms: Public domain W3C validator