MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orcoms Structured version   Unicode version

Theorem orcoms 389
Description: Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.)
Hypothesis
Ref Expression
orcoms.1  |-  ( (
ph  \/  ps )  ->  ch )
Assertion
Ref Expression
orcoms  |-  ( ( ps  \/  ph )  ->  ch )

Proof of Theorem orcoms
StepHypRef Expression
1 pm1.4 386 . 2  |-  ( ( ps  \/  ph )  ->  ( ph  \/  ps ) )
2 orcoms.1 . 2  |-  ( (
ph  \/  ps )  ->  ch )
31, 2syl 16 1  |-  ( ( ps  \/  ph )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  olcs  395  pwssun  4730  sorpsscmpl  6476  hashinfxadd  12261  dvasin  28623  dvacos  28624
  Copyright terms: Public domain W3C validator