MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta Structured version   Unicode version

Theorem orbsta 15811
Description: The Orbit-Stabilizer theorem. The mapping  F is a bijection from the cosets of the stabilizer subgroup of  A to the orbit of  A. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1  |-  X  =  ( Base `  G
)
gasta.2  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
orbsta.r  |-  .~  =  ( G ~QG  H )
orbsta.f  |-  F  =  ran  ( k  e.  X  |->  <. [ k ]  .~  ,  ( k 
.(+)  A ) >. )
orbsta.o  |-  O  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
orbsta  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-onto-> [ A ] O
)
Distinct variable groups:    g, k, x, y,  .~    u, g, 
.(+) , k, x, y    x, H, y    A, g, k, u, x, y    g, G, k, u, x, y   
g, X, k, u, x, y    k, O   
g, Y, k, x, y
Allowed substitution hints:    .~ ( u)    F( x, y, u, g, k)    H( u, g, k)    O( x, y, u, g)    Y( u)

Proof of Theorem orbsta
Dummy variables  a 
b  h  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.1 . . . . 5  |-  X  =  ( Base `  G
)
2 gasta.2 . . . . 5  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
3 orbsta.r . . . . 5  |-  .~  =  ( G ~QG  H )
4 orbsta.f . . . . 5  |-  F  =  ran  ( k  e.  X  |->  <. [ k ]  .~  ,  ( k 
.(+)  A ) >. )
51, 2, 3, 4orbstafun 15809 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  Fun  F )
6 simpr 458 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A  e.  Y )
76adantr 462 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  A  e.  Y )
81gaf 15793 . . . . . . . . . 10  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
98adantr 462 . . . . . . . . 9  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
109adantr 462 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  .(+)  : ( X  X.  Y ) --> Y )
11 simpr 458 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  k  e.  X )
1210, 11, 7fovrnd 6224 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( k  .(+)  A )  e.  Y
)
13 eqid 2433 . . . . . . . 8  |-  ( k 
.(+)  A )  =  ( k  .(+)  A )
14 oveq1 6087 . . . . . . . . . 10  |-  ( h  =  k  ->  (
h  .(+)  A )  =  ( k  .(+)  A ) )
1514eqeq1d 2441 . . . . . . . . 9  |-  ( h  =  k  ->  (
( h  .(+)  A )  =  ( k  .(+)  A )  <->  ( k  .(+)  A )  =  ( k 
.(+)  A ) ) )
1615rspcev 3062 . . . . . . . 8  |-  ( ( k  e.  X  /\  ( k  .(+)  A )  =  ( k  .(+)  A ) )  ->  E. h  e.  X  ( h  .(+) 
A )  =  ( k  .(+)  A )
)
1711, 13, 16sylancl 655 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  E. h  e.  X  ( h  .(+) 
A )  =  ( k  .(+)  A )
)
18 orbsta.o . . . . . . . 8  |-  O  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
1918gaorb 15805 . . . . . . 7  |-  ( A O ( k  .(+)  A )  <->  ( A  e.  Y  /\  ( k 
.(+)  A )  e.  Y  /\  E. h  e.  X  ( h  .(+)  A )  =  ( k  .(+)  A ) ) )
207, 12, 17, 19syl3anbrc 1165 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  A O
( k  .(+)  A ) )
21 ovex 6105 . . . . . . 7  |-  ( k 
.(+)  A )  e.  _V
22 elecg 7127 . . . . . . 7  |-  ( ( ( k  .(+)  A )  e.  _V  /\  A  e.  Y )  ->  (
( k  .(+)  A )  e.  [ A ] O 
<->  A O ( k 
.(+)  A ) ) )
2321, 7, 22sylancr 656 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( (
k  .(+)  A )  e. 
[ A ] O  <->  A O ( k  .(+)  A ) ) )
2420, 23mpbird 232 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( k  .(+)  A )  e.  [ A ] O )
251, 2gastacl 15807 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  e.  (SubGrp `  G )
)
261, 3eqger 15711 . . . . . 6  |-  ( H  e.  (SubGrp `  G
)  ->  .~  Er  X
)
2725, 26syl 16 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  .~  Er  X )
28 fvex 5689 . . . . . . 7  |-  ( Base `  G )  e.  _V
291, 28eqeltri 2503 . . . . . 6  |-  X  e. 
_V
3029a1i 11 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  X  e.  _V )
314, 24, 27, 30qliftf 7176 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( Fun  F  <->  F : ( X /.  .~  ) --> [ A ] O ) )
325, 31mpbid 210 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) --> [ A ] O )
33 eqid 2433 . . . . 5  |-  ( X /.  .~  )  =  ( X /.  .~  )
34 fveq2 5679 . . . . . . . 8  |-  ( [ z ]  .~  =  a  ->  ( F `  [ z ]  .~  )  =  ( F `  a ) )
3534eqeq1d 2441 . . . . . . 7  |-  ( [ z ]  .~  =  a  ->  ( ( F `
 [ z ]  .~  )  =  ( F `  b )  <-> 
( F `  a
)  =  ( F `
 b ) ) )
36 eqeq1 2439 . . . . . . 7  |-  ( [ z ]  .~  =  a  ->  ( [ z ]  .~  =  b  <-> 
a  =  b ) )
3735, 36imbi12d 320 . . . . . 6  |-  ( [ z ]  .~  =  a  ->  ( ( ( F `  [ z ]  .~  )  =  ( F `  b
)  ->  [ z ]  .~  =  b )  <-> 
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
3837ralbidv 2725 . . . . 5  |-  ( [ z ]  .~  =  a  ->  ( A. b  e.  ( X /.  .~  ) ( ( F `
 [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b )  <->  A. b  e.  ( X /.  .~  ) ( ( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) ) )
39 fveq2 5679 . . . . . . . . 9  |-  ( [ w ]  .~  =  b  ->  ( F `  [ w ]  .~  )  =  ( F `  b ) )
4039eqeq2d 2444 . . . . . . . 8  |-  ( [ w ]  .~  =  b  ->  ( ( F `
 [ z ]  .~  )  =  ( F `  [ w ]  .~  )  <->  ( F `  [ z ]  .~  )  =  ( F `  b ) ) )
41 eqeq2 2442 . . . . . . . 8  |-  ( [ w ]  .~  =  b  ->  ( [ z ]  .~  =  [
w ]  .~  <->  [ z ]  .~  =  b ) )
4240, 41imbi12d 320 . . . . . . 7  |-  ( [ w ]  .~  =  b  ->  ( ( ( F `  [ z ]  .~  )  =  ( F `  [
w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) 
<->  ( ( F `  [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) ) )
431, 2, 3, 4orbstaval 15810 . . . . . . . . . . . 12  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  ->  ( F `  [ z ]  .~  )  =  ( z  .(+)  A ) )
4443adantrr 709 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  ( F `  [ z ]  .~  )  =  ( z  .(+)  A )
)
451, 2, 3, 4orbstaval 15810 . . . . . . . . . . . 12  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( F `  [ w ]  .~  )  =  ( w  .(+) 
A ) )
4645adantrl 708 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  ( F `  [ w ]  .~  )  =  ( w  .(+)  A )
)
4744, 46eqeq12d 2447 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  ) 
<->  ( z  .(+)  A )  =  ( w  .(+)  A ) ) )
481, 2, 3gastacos 15808 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
z  .~  w  <->  ( z  .(+)  A )  =  ( w  .(+)  A )
) )
4927adantr 462 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  .~  Er  X )
50 simprl 748 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  z  e.  X )
5149, 50erth 7133 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
z  .~  w  <->  [ z ]  .~  =  [ w ]  .~  ) )
5247, 48, 513bitr2d 281 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  ) 
<->  [ z ]  .~  =  [ w ]  .~  ) )
5352biimpd 207 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) )
5453anassrs 641 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  /\  w  e.  X )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) )
5533, 42, 54ectocld 7155 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  /\  b  e.  ( X /.  .~  )
)  ->  ( ( F `  [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) )
5655ralrimiva 2789 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  ->  A. b  e.  ( X /.  .~  ) ( ( F `
 [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) )
5733, 38, 56ectocld 7155 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  a  e.  ( X /.  .~  ) )  ->  A. b  e.  ( X /.  .~  )
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) )
5857ralrimiva 2789 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. a  e.  ( X /.  .~  ) A. b  e.  ( X /.  .~  )
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) )
59 dff13 5958 . . 3  |-  ( F : ( X /.  .~  ) -1-1-> [ A ] O  <->  ( F : ( X /.  .~  ) --> [ A ] O  /\  A. a  e.  ( X /.  .~  ) A. b  e.  ( X /.  .~  ) ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
6032, 58, 59sylanbrc 657 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-> [ A ] O
)
61 vex 2965 . . . . . . . . 9  |-  h  e. 
_V
62 elecg 7127 . . . . . . . . 9  |-  ( ( h  e.  _V  /\  A  e.  Y )  ->  ( h  e.  [ A ] O  <->  A O h ) )
6361, 6, 62sylancr 656 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
h  e.  [ A ] O  <->  A O h ) )
6418gaorb 15805 . . . . . . . 8  |-  ( A O h  <->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+) 
A )  =  h ) )
6563, 64syl6bb 261 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
h  e.  [ A ] O  <->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+) 
A )  =  h ) ) )
6665biimpa 481 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+)  A )  =  h ) )
6766simp3d 995 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  E. w  e.  X  ( w  .(+) 
A )  =  h )
68 ovex 6105 . . . . . . . . . . . 12  |-  ( G ~QG  H )  e.  _V
693, 68eqeltri 2503 . . . . . . . . . . 11  |-  .~  e.  _V
7069ecelqsi 7144 . . . . . . . . . 10  |-  ( w  e.  X  ->  [ w ]  .~  e.  ( X /.  .~  ) )
7170adantl 463 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  [ w ]  .~  e.  ( X /.  .~  ) )
7245eqcomd 2438 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( w  .(+) 
A )  =  ( F `  [ w ]  .~  ) )
73 fveq2 5679 . . . . . . . . . . 11  |-  ( z  =  [ w ]  .~  ->  ( F `  z )  =  ( F `  [ w ]  .~  ) )
7473eqeq2d 2444 . . . . . . . . . 10  |-  ( z  =  [ w ]  .~  ->  ( ( w 
.(+)  A )  =  ( F `  z )  <-> 
( w  .(+)  A )  =  ( F `  [ w ]  .~  ) ) )
7574rspcev 3062 . . . . . . . . 9  |-  ( ( [ w ]  .~  e.  ( X /.  .~  )  /\  ( w  .(+)  A )  =  ( F `
 [ w ]  .~  ) )  ->  E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `
 z ) )
7671, 72, 75syl2anc 654 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `
 z ) )
77 eqeq1 2439 . . . . . . . . 9  |-  ( ( w  .(+)  A )  =  h  ->  ( ( w  .(+)  A )  =  ( F `  z )  <->  h  =  ( F `  z ) ) )
7877rexbidv 2726 . . . . . . . 8  |-  ( ( w  .(+)  A )  =  h  ->  ( E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `  z )  <->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
7976, 78syl5ibcom 220 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( (
w  .(+)  A )  =  h  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8079rexlimdva 2831 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( E. w  e.  X  ( w  .(+)  A )  =  h  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8180imp 429 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  E. w  e.  X  ( w  .(+)  A )  =  h )  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z ) )
8267, 81syldan 467 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
)
8382ralrimiva 2789 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. h  e.  [  A ] O E. z  e.  ( X /.  .~  ) h  =  ( F `  z ) )
84 dffo3 5846 . . 3  |-  ( F : ( X /.  .~  ) -onto-> [ A ] O  <->  ( F : ( X /.  .~  ) --> [ A ] O  /\  A. h  e.  [  A ] O E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8532, 83, 84sylanbrc 657 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -onto-> [ A ] O
)
86 df-f1o 5413 . 2  |-  ( F : ( X /.  .~  ) -1-1-onto-> [ A ] O  <->  ( F : ( X /.  .~  ) -1-1-> [ A ] O  /\  F : ( X /.  .~  ) -onto-> [ A ] O
) )
8760, 85, 86sylanbrc 657 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-onto-> [ A ] O
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2962    C_ wss 3316   {cpr 3867   <.cop 3871   class class class wbr 4280   {copab 4337    e. cmpt 4338    X. cxp 4825   ran crn 4828   Fun wfun 5400   -->wf 5402   -1-1->wf1 5403   -onto->wfo 5404   -1-1-onto->wf1o 5405   ` cfv 5406  (class class class)co 6080    Er wer 7086   [cec 7087   /.cqs 7088   Basecbs 14157  SubGrpcsubg 15655   ~QG cqg 15657    GrpAct cga 15787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-subg 15658  df-eqg 15660  df-ga 15788
This theorem is referenced by:  orbsta2  15812
  Copyright terms: Public domain W3C validator