MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta Structured version   Unicode version

Theorem orbsta 16139
Description: The Orbit-Stabilizer theorem. The mapping  F is a bijection from the cosets of the stabilizer subgroup of  A to the orbit of  A. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1  |-  X  =  ( Base `  G
)
gasta.2  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
orbsta.r  |-  .~  =  ( G ~QG  H )
orbsta.f  |-  F  =  ran  ( k  e.  X  |->  <. [ k ]  .~  ,  ( k 
.(+)  A ) >. )
orbsta.o  |-  O  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
orbsta  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-onto-> [ A ] O
)
Distinct variable groups:    g, k, x, y,  .~    u, g, 
.(+) , k, x, y    x, H, y    A, g, k, u, x, y    g, G, k, u, x, y   
g, X, k, u, x, y    k, O   
g, Y, k, x, y
Allowed substitution hints:    .~ ( u)    F( x, y, u, g, k)    H( u, g, k)    O( x, y, u, g)    Y( u)

Proof of Theorem orbsta
Dummy variables  a 
b  h  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.1 . . . . 5  |-  X  =  ( Base `  G
)
2 gasta.2 . . . . 5  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
3 orbsta.r . . . . 5  |-  .~  =  ( G ~QG  H )
4 orbsta.f . . . . 5  |-  F  =  ran  ( k  e.  X  |->  <. [ k ]  .~  ,  ( k 
.(+)  A ) >. )
51, 2, 3, 4orbstafun 16137 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  Fun  F )
6 simpr 461 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A  e.  Y )
76adantr 465 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  A  e.  Y )
81gaf 16121 . . . . . . . . . 10  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
98adantr 465 . . . . . . . . 9  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
109adantr 465 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  .(+)  : ( X  X.  Y ) --> Y )
11 simpr 461 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  k  e.  X )
1210, 11, 7fovrnd 6422 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( k  .(+)  A )  e.  Y
)
13 eqid 2460 . . . . . . . 8  |-  ( k 
.(+)  A )  =  ( k  .(+)  A )
14 oveq1 6282 . . . . . . . . . 10  |-  ( h  =  k  ->  (
h  .(+)  A )  =  ( k  .(+)  A ) )
1514eqeq1d 2462 . . . . . . . . 9  |-  ( h  =  k  ->  (
( h  .(+)  A )  =  ( k  .(+)  A )  <->  ( k  .(+)  A )  =  ( k 
.(+)  A ) ) )
1615rspcev 3207 . . . . . . . 8  |-  ( ( k  e.  X  /\  ( k  .(+)  A )  =  ( k  .(+)  A ) )  ->  E. h  e.  X  ( h  .(+) 
A )  =  ( k  .(+)  A )
)
1711, 13, 16sylancl 662 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  E. h  e.  X  ( h  .(+) 
A )  =  ( k  .(+)  A )
)
18 orbsta.o . . . . . . . 8  |-  O  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
1918gaorb 16133 . . . . . . 7  |-  ( A O ( k  .(+)  A )  <->  ( A  e.  Y  /\  ( k 
.(+)  A )  e.  Y  /\  E. h  e.  X  ( h  .(+)  A )  =  ( k  .(+)  A ) ) )
207, 12, 17, 19syl3anbrc 1175 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  A O
( k  .(+)  A ) )
21 ovex 6300 . . . . . . 7  |-  ( k 
.(+)  A )  e.  _V
22 elecg 7340 . . . . . . 7  |-  ( ( ( k  .(+)  A )  e.  _V  /\  A  e.  Y )  ->  (
( k  .(+)  A )  e.  [ A ] O 
<->  A O ( k 
.(+)  A ) ) )
2321, 7, 22sylancr 663 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( (
k  .(+)  A )  e. 
[ A ] O  <->  A O ( k  .(+)  A ) ) )
2420, 23mpbird 232 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( k  .(+)  A )  e.  [ A ] O )
251, 2gastacl 16135 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  e.  (SubGrp `  G )
)
261, 3eqger 16039 . . . . . 6  |-  ( H  e.  (SubGrp `  G
)  ->  .~  Er  X
)
2725, 26syl 16 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  .~  Er  X )
28 fvex 5867 . . . . . . 7  |-  ( Base `  G )  e.  _V
291, 28eqeltri 2544 . . . . . 6  |-  X  e. 
_V
3029a1i 11 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  X  e.  _V )
314, 24, 27, 30qliftf 7389 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( Fun  F  <->  F : ( X /.  .~  ) --> [ A ] O ) )
325, 31mpbid 210 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) --> [ A ] O )
33 eqid 2460 . . . . 5  |-  ( X /.  .~  )  =  ( X /.  .~  )
34 fveq2 5857 . . . . . . . 8  |-  ( [ z ]  .~  =  a  ->  ( F `  [ z ]  .~  )  =  ( F `  a ) )
3534eqeq1d 2462 . . . . . . 7  |-  ( [ z ]  .~  =  a  ->  ( ( F `
 [ z ]  .~  )  =  ( F `  b )  <-> 
( F `  a
)  =  ( F `
 b ) ) )
36 eqeq1 2464 . . . . . . 7  |-  ( [ z ]  .~  =  a  ->  ( [ z ]  .~  =  b  <-> 
a  =  b ) )
3735, 36imbi12d 320 . . . . . 6  |-  ( [ z ]  .~  =  a  ->  ( ( ( F `  [ z ]  .~  )  =  ( F `  b
)  ->  [ z ]  .~  =  b )  <-> 
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
3837ralbidv 2896 . . . . 5  |-  ( [ z ]  .~  =  a  ->  ( A. b  e.  ( X /.  .~  ) ( ( F `
 [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b )  <->  A. b  e.  ( X /.  .~  ) ( ( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) ) )
39 fveq2 5857 . . . . . . . . 9  |-  ( [ w ]  .~  =  b  ->  ( F `  [ w ]  .~  )  =  ( F `  b ) )
4039eqeq2d 2474 . . . . . . . 8  |-  ( [ w ]  .~  =  b  ->  ( ( F `
 [ z ]  .~  )  =  ( F `  [ w ]  .~  )  <->  ( F `  [ z ]  .~  )  =  ( F `  b ) ) )
41 eqeq2 2475 . . . . . . . 8  |-  ( [ w ]  .~  =  b  ->  ( [ z ]  .~  =  [
w ]  .~  <->  [ z ]  .~  =  b ) )
4240, 41imbi12d 320 . . . . . . 7  |-  ( [ w ]  .~  =  b  ->  ( ( ( F `  [ z ]  .~  )  =  ( F `  [
w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) 
<->  ( ( F `  [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) ) )
431, 2, 3, 4orbstaval 16138 . . . . . . . . . . . 12  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  ->  ( F `  [ z ]  .~  )  =  ( z  .(+)  A ) )
4443adantrr 716 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  ( F `  [ z ]  .~  )  =  ( z  .(+)  A )
)
451, 2, 3, 4orbstaval 16138 . . . . . . . . . . . 12  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( F `  [ w ]  .~  )  =  ( w  .(+) 
A ) )
4645adantrl 715 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  ( F `  [ w ]  .~  )  =  ( w  .(+)  A )
)
4744, 46eqeq12d 2482 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  ) 
<->  ( z  .(+)  A )  =  ( w  .(+)  A ) ) )
481, 2, 3gastacos 16136 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
z  .~  w  <->  ( z  .(+)  A )  =  ( w  .(+)  A )
) )
4927adantr 465 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  .~  Er  X )
50 simprl 755 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  z  e.  X )
5149, 50erth 7346 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
z  .~  w  <->  [ z ]  .~  =  [ w ]  .~  ) )
5247, 48, 513bitr2d 281 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  ) 
<->  [ z ]  .~  =  [ w ]  .~  ) )
5352biimpd 207 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) )
5453anassrs 648 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  /\  w  e.  X )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) )
5533, 42, 54ectocld 7368 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  /\  b  e.  ( X /.  .~  )
)  ->  ( ( F `  [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) )
5655ralrimiva 2871 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  ->  A. b  e.  ( X /.  .~  ) ( ( F `
 [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) )
5733, 38, 56ectocld 7368 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  a  e.  ( X /.  .~  ) )  ->  A. b  e.  ( X /.  .~  )
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) )
5857ralrimiva 2871 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. a  e.  ( X /.  .~  ) A. b  e.  ( X /.  .~  )
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) )
59 dff13 6145 . . 3  |-  ( F : ( X /.  .~  ) -1-1-> [ A ] O  <->  ( F : ( X /.  .~  ) --> [ A ] O  /\  A. a  e.  ( X /.  .~  ) A. b  e.  ( X /.  .~  ) ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
6032, 58, 59sylanbrc 664 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-> [ A ] O
)
61 vex 3109 . . . . . . . . 9  |-  h  e. 
_V
62 elecg 7340 . . . . . . . . 9  |-  ( ( h  e.  _V  /\  A  e.  Y )  ->  ( h  e.  [ A ] O  <->  A O h ) )
6361, 6, 62sylancr 663 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
h  e.  [ A ] O  <->  A O h ) )
6418gaorb 16133 . . . . . . . 8  |-  ( A O h  <->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+) 
A )  =  h ) )
6563, 64syl6bb 261 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
h  e.  [ A ] O  <->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+) 
A )  =  h ) ) )
6665biimpa 484 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+)  A )  =  h ) )
6766simp3d 1005 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  E. w  e.  X  ( w  .(+) 
A )  =  h )
68 ovex 6300 . . . . . . . . . . . 12  |-  ( G ~QG  H )  e.  _V
693, 68eqeltri 2544 . . . . . . . . . . 11  |-  .~  e.  _V
7069ecelqsi 7357 . . . . . . . . . 10  |-  ( w  e.  X  ->  [ w ]  .~  e.  ( X /.  .~  ) )
7170adantl 466 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  [ w ]  .~  e.  ( X /.  .~  ) )
7245eqcomd 2468 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( w  .(+) 
A )  =  ( F `  [ w ]  .~  ) )
73 fveq2 5857 . . . . . . . . . . 11  |-  ( z  =  [ w ]  .~  ->  ( F `  z )  =  ( F `  [ w ]  .~  ) )
7473eqeq2d 2474 . . . . . . . . . 10  |-  ( z  =  [ w ]  .~  ->  ( ( w 
.(+)  A )  =  ( F `  z )  <-> 
( w  .(+)  A )  =  ( F `  [ w ]  .~  ) ) )
7574rspcev 3207 . . . . . . . . 9  |-  ( ( [ w ]  .~  e.  ( X /.  .~  )  /\  ( w  .(+)  A )  =  ( F `
 [ w ]  .~  ) )  ->  E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `
 z ) )
7671, 72, 75syl2anc 661 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `
 z ) )
77 eqeq1 2464 . . . . . . . . 9  |-  ( ( w  .(+)  A )  =  h  ->  ( ( w  .(+)  A )  =  ( F `  z )  <->  h  =  ( F `  z ) ) )
7877rexbidv 2966 . . . . . . . 8  |-  ( ( w  .(+)  A )  =  h  ->  ( E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `  z )  <->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
7976, 78syl5ibcom 220 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( (
w  .(+)  A )  =  h  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8079rexlimdva 2948 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( E. w  e.  X  ( w  .(+)  A )  =  h  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8180imp 429 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  E. w  e.  X  ( w  .(+)  A )  =  h )  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z ) )
8267, 81syldan 470 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
)
8382ralrimiva 2871 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. h  e.  [  A ] O E. z  e.  ( X /.  .~  ) h  =  ( F `  z ) )
84 dffo3 6027 . . 3  |-  ( F : ( X /.  .~  ) -onto-> [ A ] O  <->  ( F : ( X /.  .~  ) --> [ A ] O  /\  A. h  e.  [  A ] O E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8532, 83, 84sylanbrc 664 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -onto-> [ A ] O
)
86 df-f1o 5586 . 2  |-  ( F : ( X /.  .~  ) -1-1-onto-> [ A ] O  <->  ( F : ( X /.  .~  ) -1-1-> [ A ] O  /\  F : ( X /.  .~  ) -onto-> [ A ] O
) )
8760, 85, 86sylanbrc 664 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-onto-> [ A ] O
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3106    C_ wss 3469   {cpr 4022   <.cop 4026   class class class wbr 4440   {copab 4497    |-> cmpt 4498    X. cxp 4990   ran crn 4993   Fun wfun 5573   -->wf 5575   -1-1->wf1 5576   -onto->wfo 5577   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275    Er wer 7298   [cec 7299   /.cqs 7300   Basecbs 14479  SubGrpcsubg 15983   ~QG cqg 15985    GrpAct cga 16115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-ec 7303  df-qs 7307  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-0g 14686  df-mnd 15721  df-grp 15851  df-minusg 15852  df-subg 15986  df-eqg 15988  df-ga 16116
This theorem is referenced by:  orbsta2  16140
  Copyright terms: Public domain W3C validator