MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbsta Structured version   Unicode version

Theorem orbsta 16955
Description: The Orbit-Stabilizer theorem. The mapping  F is a bijection from the cosets of the stabilizer subgroup of  A to the orbit of  A. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1  |-  X  =  ( Base `  G
)
gasta.2  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
orbsta.r  |-  .~  =  ( G ~QG  H )
orbsta.f  |-  F  =  ran  ( k  e.  X  |->  <. [ k ]  .~  ,  ( k 
.(+)  A ) >. )
orbsta.o  |-  O  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
Assertion
Ref Expression
orbsta  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-onto-> [ A ] O
)
Distinct variable groups:    g, k, x, y,  .~    u, g, 
.(+) , k, x, y    x, H, y    A, g, k, u, x, y    g, G, k, u, x, y   
g, X, k, u, x, y    k, O   
g, Y, k, x, y
Allowed substitution hints:    .~ ( u)    F( x, y, u, g, k)    H( u, g, k)    O( x, y, u, g)    Y( u)

Proof of Theorem orbsta
Dummy variables  a 
b  h  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.1 . . . . 5  |-  X  =  ( Base `  G
)
2 gasta.2 . . . . 5  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
3 orbsta.r . . . . 5  |-  .~  =  ( G ~QG  H )
4 orbsta.f . . . . 5  |-  F  =  ran  ( k  e.  X  |->  <. [ k ]  .~  ,  ( k 
.(+)  A ) >. )
51, 2, 3, 4orbstafun 16953 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  Fun  F )
6 simpr 462 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A  e.  Y )
76adantr 466 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  A  e.  Y )
81gaf 16937 . . . . . . . . . 10  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
98adantr 466 . . . . . . . . 9  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
109adantr 466 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  .(+)  : ( X  X.  Y ) --> Y )
11 simpr 462 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  k  e.  X )
1210, 11, 7fovrnd 6452 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( k  .(+)  A )  e.  Y
)
13 eqid 2422 . . . . . . . 8  |-  ( k 
.(+)  A )  =  ( k  .(+)  A )
14 oveq1 6309 . . . . . . . . . 10  |-  ( h  =  k  ->  (
h  .(+)  A )  =  ( k  .(+)  A ) )
1514eqeq1d 2424 . . . . . . . . 9  |-  ( h  =  k  ->  (
( h  .(+)  A )  =  ( k  .(+)  A )  <->  ( k  .(+)  A )  =  ( k 
.(+)  A ) ) )
1615rspcev 3182 . . . . . . . 8  |-  ( ( k  e.  X  /\  ( k  .(+)  A )  =  ( k  .(+)  A ) )  ->  E. h  e.  X  ( h  .(+) 
A )  =  ( k  .(+)  A )
)
1711, 13, 16sylancl 666 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  E. h  e.  X  ( h  .(+) 
A )  =  ( k  .(+)  A )
)
18 orbsta.o . . . . . . . 8  |-  O  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  Y  /\  E. g  e.  X  (
g  .(+)  x )  =  y ) }
1918gaorb 16949 . . . . . . 7  |-  ( A O ( k  .(+)  A )  <->  ( A  e.  Y  /\  ( k 
.(+)  A )  e.  Y  /\  E. h  e.  X  ( h  .(+)  A )  =  ( k  .(+)  A ) ) )
207, 12, 17, 19syl3anbrc 1189 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  A O
( k  .(+)  A ) )
21 ovex 6330 . . . . . . 7  |-  ( k 
.(+)  A )  e.  _V
22 elecg 7407 . . . . . . 7  |-  ( ( ( k  .(+)  A )  e.  _V  /\  A  e.  Y )  ->  (
( k  .(+)  A )  e.  [ A ] O 
<->  A O ( k 
.(+)  A ) ) )
2321, 7, 22sylancr 667 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( (
k  .(+)  A )  e. 
[ A ] O  <->  A O ( k  .(+)  A ) ) )
2420, 23mpbird 235 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  k  e.  X
)  ->  ( k  .(+)  A )  e.  [ A ] O )
251, 2gastacl 16951 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  e.  (SubGrp `  G )
)
261, 3eqger 16855 . . . . . 6  |-  ( H  e.  (SubGrp `  G
)  ->  .~  Er  X
)
2725, 26syl 17 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  .~  Er  X )
28 fvex 5888 . . . . . . 7  |-  ( Base `  G )  e.  _V
291, 28eqeltri 2506 . . . . . 6  |-  X  e. 
_V
3029a1i 11 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  X  e.  _V )
314, 24, 27, 30qliftf 7456 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( Fun  F  <->  F : ( X /.  .~  ) --> [ A ] O ) )
325, 31mpbid 213 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) --> [ A ] O )
33 eqid 2422 . . . . 5  |-  ( X /.  .~  )  =  ( X /.  .~  )
34 fveq2 5878 . . . . . . . 8  |-  ( [ z ]  .~  =  a  ->  ( F `  [ z ]  .~  )  =  ( F `  a ) )
3534eqeq1d 2424 . . . . . . 7  |-  ( [ z ]  .~  =  a  ->  ( ( F `
 [ z ]  .~  )  =  ( F `  b )  <-> 
( F `  a
)  =  ( F `
 b ) ) )
36 eqeq1 2426 . . . . . . 7  |-  ( [ z ]  .~  =  a  ->  ( [ z ]  .~  =  b  <-> 
a  =  b ) )
3735, 36imbi12d 321 . . . . . 6  |-  ( [ z ]  .~  =  a  ->  ( ( ( F `  [ z ]  .~  )  =  ( F `  b
)  ->  [ z ]  .~  =  b )  <-> 
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
3837ralbidv 2864 . . . . 5  |-  ( [ z ]  .~  =  a  ->  ( A. b  e.  ( X /.  .~  ) ( ( F `
 [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b )  <->  A. b  e.  ( X /.  .~  ) ( ( F `  a
)  =  ( F `
 b )  -> 
a  =  b ) ) )
39 fveq2 5878 . . . . . . . . 9  |-  ( [ w ]  .~  =  b  ->  ( F `  [ w ]  .~  )  =  ( F `  b ) )
4039eqeq2d 2436 . . . . . . . 8  |-  ( [ w ]  .~  =  b  ->  ( ( F `
 [ z ]  .~  )  =  ( F `  [ w ]  .~  )  <->  ( F `  [ z ]  .~  )  =  ( F `  b ) ) )
41 eqeq2 2437 . . . . . . . 8  |-  ( [ w ]  .~  =  b  ->  ( [ z ]  .~  =  [
w ]  .~  <->  [ z ]  .~  =  b ) )
4240, 41imbi12d 321 . . . . . . 7  |-  ( [ w ]  .~  =  b  ->  ( ( ( F `  [ z ]  .~  )  =  ( F `  [
w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) 
<->  ( ( F `  [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) ) )
431, 2, 3, 4orbstaval 16954 . . . . . . . . . . . 12  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  ->  ( F `  [ z ]  .~  )  =  ( z  .(+)  A ) )
4443adantrr 721 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  ( F `  [ z ]  .~  )  =  ( z  .(+)  A )
)
451, 2, 3, 4orbstaval 16954 . . . . . . . . . . . 12  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( F `  [ w ]  .~  )  =  ( w  .(+) 
A ) )
4645adantrl 720 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  ( F `  [ w ]  .~  )  =  ( w  .(+)  A )
)
4744, 46eqeq12d 2444 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  ) 
<->  ( z  .(+)  A )  =  ( w  .(+)  A ) ) )
481, 2, 3gastacos 16952 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
z  .~  w  <->  ( z  .(+)  A )  =  ( w  .(+)  A )
) )
4927adantr 466 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  .~  Er  X )
50 simprl 762 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  z  e.  X )
5149, 50erth 7413 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
z  .~  w  <->  [ z ]  .~  =  [ w ]  .~  ) )
5247, 48, 513bitr2d 284 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  ) 
<->  [ z ]  .~  =  [ w ]  .~  ) )
5352biimpd 210 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) )
5453anassrs 652 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  /\  w  e.  X )  ->  (
( F `  [
z ]  .~  )  =  ( F `  [ w ]  .~  )  ->  [ z ]  .~  =  [ w ]  .~  ) )
5533, 42, 54ectocld 7435 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  /\  b  e.  ( X /.  .~  )
)  ->  ( ( F `  [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) )
5655ralrimiva 2839 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  z  e.  X
)  ->  A. b  e.  ( X /.  .~  ) ( ( F `
 [ z ]  .~  )  =  ( F `  b )  ->  [ z ]  .~  =  b ) )
5733, 38, 56ectocld 7435 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  a  e.  ( X /.  .~  ) )  ->  A. b  e.  ( X /.  .~  )
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) )
5857ralrimiva 2839 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. a  e.  ( X /.  .~  ) A. b  e.  ( X /.  .~  )
( ( F `  a )  =  ( F `  b )  ->  a  =  b ) )
59 dff13 6171 . . 3  |-  ( F : ( X /.  .~  ) -1-1-> [ A ] O  <->  ( F : ( X /.  .~  ) --> [ A ] O  /\  A. a  e.  ( X /.  .~  ) A. b  e.  ( X /.  .~  ) ( ( F `  a )  =  ( F `  b )  ->  a  =  b ) ) )
6032, 58, 59sylanbrc 668 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-> [ A ] O
)
61 vex 3084 . . . . . . . . 9  |-  h  e. 
_V
62 elecg 7407 . . . . . . . . 9  |-  ( ( h  e.  _V  /\  A  e.  Y )  ->  ( h  e.  [ A ] O  <->  A O h ) )
6361, 6, 62sylancr 667 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
h  e.  [ A ] O  <->  A O h ) )
6418gaorb 16949 . . . . . . . 8  |-  ( A O h  <->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+) 
A )  =  h ) )
6563, 64syl6bb 264 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
h  e.  [ A ] O  <->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+) 
A )  =  h ) ) )
6665biimpa 486 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  ( A  e.  Y  /\  h  e.  Y  /\  E. w  e.  X  ( w  .(+)  A )  =  h ) )
6766simp3d 1019 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  E. w  e.  X  ( w  .(+) 
A )  =  h )
68 ovex 6330 . . . . . . . . . . . 12  |-  ( G ~QG  H )  e.  _V
693, 68eqeltri 2506 . . . . . . . . . . 11  |-  .~  e.  _V
7069ecelqsi 7424 . . . . . . . . . 10  |-  ( w  e.  X  ->  [ w ]  .~  e.  ( X /.  .~  ) )
7170adantl 467 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  [ w ]  .~  e.  ( X /.  .~  ) )
7245eqcomd 2430 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( w  .(+) 
A )  =  ( F `  [ w ]  .~  ) )
73 fveq2 5878 . . . . . . . . . . 11  |-  ( z  =  [ w ]  .~  ->  ( F `  z )  =  ( F `  [ w ]  .~  ) )
7473eqeq2d 2436 . . . . . . . . . 10  |-  ( z  =  [ w ]  .~  ->  ( ( w 
.(+)  A )  =  ( F `  z )  <-> 
( w  .(+)  A )  =  ( F `  [ w ]  .~  ) ) )
7574rspcev 3182 . . . . . . . . 9  |-  ( ( [ w ]  .~  e.  ( X /.  .~  )  /\  ( w  .(+)  A )  =  ( F `
 [ w ]  .~  ) )  ->  E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `
 z ) )
7671, 72, 75syl2anc 665 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `
 z ) )
77 eqeq1 2426 . . . . . . . . 9  |-  ( ( w  .(+)  A )  =  h  ->  ( ( w  .(+)  A )  =  ( F `  z )  <->  h  =  ( F `  z ) ) )
7877rexbidv 2939 . . . . . . . 8  |-  ( ( w  .(+)  A )  =  h  ->  ( E. z  e.  ( X /.  .~  ) ( w  .(+)  A )  =  ( F `  z )  <->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
7976, 78syl5ibcom 223 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  w  e.  X
)  ->  ( (
w  .(+)  A )  =  h  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8079rexlimdva 2917 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( E. w  e.  X  ( w  .(+)  A )  =  h  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8180imp 430 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  E. w  e.  X  ( w  .(+)  A )  =  h )  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z ) )
8267, 81syldan 472 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  h  e.  [ A ] O )  ->  E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
)
8382ralrimiva 2839 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. h  e.  [  A ] O E. z  e.  ( X /.  .~  ) h  =  ( F `  z ) )
84 dffo3 6049 . . 3  |-  ( F : ( X /.  .~  ) -onto-> [ A ] O  <->  ( F : ( X /.  .~  ) --> [ A ] O  /\  A. h  e.  [  A ] O E. z  e.  ( X /.  .~  ) h  =  ( F `  z )
) )
8532, 83, 84sylanbrc 668 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -onto-> [ A ] O
)
86 df-f1o 5605 . 2  |-  ( F : ( X /.  .~  ) -1-1-onto-> [ A ] O  <->  ( F : ( X /.  .~  ) -1-1-> [ A ] O  /\  F : ( X /.  .~  ) -onto-> [ A ] O
) )
8760, 85, 86sylanbrc 668 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  F : ( X /.  .~  ) -1-1-onto-> [ A ] O
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776   {crab 2779   _Vcvv 3081    C_ wss 3436   {cpr 3998   <.cop 4002   class class class wbr 4420   {copab 4478    |-> cmpt 4479    X. cxp 4848   ran crn 4851   Fun wfun 5592   -->wf 5594   -1-1->wf1 5595   -onto->wfo 5596   -1-1-onto->wf1o 5597   ` cfv 5598  (class class class)co 6302    Er wer 7365   [cec 7366   /.cqs 7367   Basecbs 15109  SubGrpcsubg 16799   ~QG cqg 16801    GrpAct cga 16931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-ec 7370  df-qs 7374  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-nn 10611  df-2 10669  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-ress 15116  df-plusg 15191  df-0g 15328  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-grp 16661  df-minusg 16662  df-subg 16802  df-eqg 16804  df-ga 16932
This theorem is referenced by:  orbsta2  16956
  Copyright terms: Public domain W3C validator