MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oran Unicode version

Theorem oran 484
Description: Disjunction in terms of conjunction (DeMorgan's law). Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
oran  |-  ( (
ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) )

Proof of Theorem oran
StepHypRef Expression
1 pm4.56 483 . 2  |-  ( ( -.  ph  /\  -.  ps ) 
<->  -.  ( ph  \/  ps ) )
21con2bii 324 1  |-  ( (
ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178    \/ wo 359    /\ wa 360
This theorem is referenced by:  pm4.57  485  19.43OLD  1605  ordthauslem  16943
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362
  Copyright terms: Public domain W3C validator