Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  or32dd Structured version   Unicode version

Theorem or32dd 29021
Description: A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.)
Hypothesis
Ref Expression
or32dd.1  |-  ( ph  ->  ( ps  ->  (
( ch  \/  th )  \/  ta )
) )
Assertion
Ref Expression
or32dd  |-  ( ph  ->  ( ps  ->  (
( ch  \/  ta )  \/  th )
) )

Proof of Theorem or32dd
StepHypRef Expression
1 or32dd.1 . 2  |-  ( ph  ->  ( ps  ->  (
( ch  \/  th )  \/  ta )
) )
2 or32 527 . 2  |-  ( ( ( ch  \/  ta )  \/  th )  <->  ( ( ch  \/  th )  \/  ta )
)
31, 2syl6ibr 227 1  |-  ( ph  ->  ( ps  ->  (
( ch  \/  ta )  \/  th )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  mpt2bi123f  29099  mptbi12f  29103  ac6s6  29108
  Copyright terms: Public domain W3C validator