MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthreg Structured version   Unicode version

Theorem opthreg 7936
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 7919 (via the preleq 7935 step). See df-op 3993 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
opthreg  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem opthreg
StepHypRef Expression
1 preleq.1 . . . . 5  |-  A  e. 
_V
21prid1 4092 . . . 4  |-  A  e. 
{ A ,  B }
3 preleq.3 . . . . 5  |-  C  e. 
_V
43prid1 4092 . . . 4  |-  C  e. 
{ C ,  D }
5 prex 4643 . . . . 5  |-  { A ,  B }  e.  _V
6 prex 4643 . . . . 5  |-  { C ,  D }  e.  _V
71, 5, 3, 6preleq 7935 . . . 4  |-  ( ( ( A  e.  { A ,  B }  /\  C  e.  { C ,  D } )  /\  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D }
) )
82, 4, 7mpanl12 682 . . 3  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D } ) )
9 preq1 4063 . . . . . 6  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
109eqeq1d 2456 . . . . 5  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D } 
<->  { C ,  B }  =  { C ,  D } ) )
11 preleq.2 . . . . . 6  |-  B  e. 
_V
12 preleq.4 . . . . . 6  |-  D  e. 
_V
1311, 12preqr2 4156 . . . . 5  |-  ( { C ,  B }  =  { C ,  D }  ->  B  =  D )
1410, 13syl6bi 228 . . . 4  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D }  ->  B  =  D ) )
1514imdistani 690 . . 3  |-  ( ( A  =  C  /\  { A ,  B }  =  { C ,  D } )  ->  ( A  =  C  /\  B  =  D )
)
168, 15syl 16 . 2  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  B  =  D )
)
17 preq1 4063 . . . 4  |-  ( A  =  C  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
1817adantr 465 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
19 preq12 4065 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
2019preq2d 4070 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { C ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2118, 20eqtrd 2495 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2216, 21impbii 188 1  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078   {cpr 3988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-reg 7919
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-br 4402  df-opab 4460  df-eprel 4741  df-fr 4788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator