MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthpr Structured version   Unicode version

Theorem opthpr 4145
Description: A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.)
Hypotheses
Ref Expression
preq12b.1  |-  A  e. 
_V
preq12b.2  |-  B  e. 
_V
preq12b.3  |-  C  e. 
_V
preq12b.4  |-  D  e. 
_V
Assertion
Ref Expression
opthpr  |-  ( A  =/=  D  ->  ( { A ,  B }  =  { C ,  D } 
<->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem opthpr
StepHypRef Expression
1 preq12b.1 . . 3  |-  A  e. 
_V
2 preq12b.2 . . 3  |-  B  e. 
_V
3 preq12b.3 . . 3  |-  C  e. 
_V
4 preq12b.4 . . 3  |-  D  e. 
_V
51, 2, 3, 4preq12b 4143 . 2  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
6 idd 24 . . . 4  |-  ( A  =/=  D  ->  (
( A  =  C  /\  B  =  D )  ->  ( A  =  C  /\  B  =  D ) ) )
7 df-ne 2644 . . . . . 6  |-  ( A  =/=  D  <->  -.  A  =  D )
8 pm2.21 108 . . . . . 6  |-  ( -.  A  =  D  -> 
( A  =  D  ->  ( B  =  C  ->  ( A  =  C  /\  B  =  D ) ) ) )
97, 8sylbi 195 . . . . 5  |-  ( A  =/=  D  ->  ( A  =  D  ->  ( B  =  C  -> 
( A  =  C  /\  B  =  D ) ) ) )
109impd 431 . . . 4  |-  ( A  =/=  D  ->  (
( A  =  D  /\  B  =  C )  ->  ( A  =  C  /\  B  =  D ) ) )
116, 10jaod 380 . . 3  |-  ( A  =/=  D  ->  (
( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
)  ->  ( A  =  C  /\  B  =  D ) ) )
12 orc 385 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
1311, 12impbid1 203 . 2  |-  ( A  =/=  D  ->  (
( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
)  <->  ( A  =  C  /\  B  =  D ) ) )
145, 13syl5bb 257 1  |-  ( A  =/=  D  ->  ( { A ,  B }  =  { C ,  D } 
<->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2642   _Vcvv 3065   {cpr 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-v 3067  df-un 3428  df-sn 3973  df-pr 3975
This theorem is referenced by:  brdom7disj  8796  brdom6disj  8797
  Copyright terms: Public domain W3C validator