MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Unicode version

Theorem opth2 4398
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1  |-  C  e. 
_V
opth2.2  |-  D  e. 
_V
Assertion
Ref Expression
opth2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2  |-  C  e. 
_V
2 opth2.2 . 2  |-  D  e. 
_V
3 opthg2 4397 . 2  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
41, 2, 3mp2an 654 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   <.cop 3777
This theorem is referenced by:  eqvinop  4401  opelxp  4867  fsn  5865  opiota  6494  canthwe  8482  ltresr  8971  fmucndlem  18274  diblsmopel  31654  cdlemn7  31686  dihordlem7  31697  xihopellsmN  31737  dihopellsm  31738  dihpN  31819
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783
  Copyright terms: Public domain W3C validator