Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Structured version   Unicode version

Theorem opth2 4725
 Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1
opth2.2
Assertion
Ref Expression
opth2

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2
2 opth2.2 . 2
3 opthg2 4724 . 2
41, 2, 3mp2an 672 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369   wceq 1379   wcel 1767  cvv 3113  cop 4033 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034 This theorem is referenced by:  eqvinop  4731  opelxp  5028  fsn  6057  opiota  6840  canthwe  9025  ltresr  9513  mat1dimelbas  18737  fmucndlem  20526  diblsmopel  35968  cdlemn7  36000  dihordlem7  36011  xihopellsmN  36051  dihopellsm  36052  dihpN  36133
 Copyright terms: Public domain W3C validator