MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth Structured version   Unicode version

Theorem opth 4730
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opth  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . . 4  |-  A  e. 
_V
2 opth1.2 . . . 4  |-  B  e. 
_V
31, 2opth1 4729 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )
41, 2opi1 4723 . . . . . . 7  |-  { A }  e.  <. A ,  B >.
5 id 22 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  D >. )
64, 5syl5eleq 2551 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  <. C ,  D >. )
7 oprcl 4244 . . . . . 6  |-  ( { A }  e.  <. C ,  D >.  ->  ( C  e.  _V  /\  D  e.  _V ) )
86, 7syl 16 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( C  e.  _V  /\  D  e.  _V )
)
98simprd 463 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  D  e.  _V )
103opeq1d 4225 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  B >. )
1110, 5eqtr3d 2500 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  = 
<. C ,  D >. )
128simpld 459 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  _V )
13 dfopg 4217 . . . . . . . 8  |-  ( ( C  e.  _V  /\  B  e.  _V )  -> 
<. C ,  B >.  =  { { C } ,  { C ,  B } } )
1412, 2, 13sylancl 662 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  =  { { C } ,  { C ,  B } } )
1511, 14eqtr3d 2500 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  B } } )
16 dfopg 4217 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  =  { { C } ,  { C ,  D } } )
178, 16syl 16 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  D } } )
1815, 17eqtr3d 2500 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } } )
19 prex 4698 . . . . . 6  |-  { C ,  B }  e.  _V
20 prex 4698 . . . . . 6  |-  { C ,  D }  e.  _V
2119, 20preqr2 4207 . . . . 5  |-  ( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D } )
2218, 21syl 16 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  =  { C ,  D } )
23 preq2 4112 . . . . . . 7  |-  ( x  =  D  ->  { C ,  x }  =  { C ,  D }
)
2423eqeq2d 2471 . . . . . 6  |-  ( x  =  D  ->  ( { C ,  B }  =  { C ,  x } 
<->  { C ,  B }  =  { C ,  D } ) )
25 eqeq2 2472 . . . . . 6  |-  ( x  =  D  ->  ( B  =  x  <->  B  =  D ) )
2624, 25imbi12d 320 . . . . 5  |-  ( x  =  D  ->  (
( { C ,  B }  =  { C ,  x }  ->  B  =  x )  <-> 
( { C ,  B }  =  { C ,  D }  ->  B  =  D ) ) )
27 vex 3112 . . . . . 6  |-  x  e. 
_V
282, 27preqr2 4207 . . . . 5  |-  ( { C ,  B }  =  { C ,  x }  ->  B  =  x )
2926, 28vtoclg 3167 . . . 4  |-  ( D  e.  _V  ->  ( { C ,  B }  =  { C ,  D }  ->  B  =  D ) )
309, 22, 29sylc 60 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  B  =  D )
313, 30jca 532 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( A  =  C  /\  B  =  D ) )
32 opeq12 4221 . 2  |-  ( ( A  =  C  /\  B  =  D )  -> 
<. A ,  B >.  = 
<. C ,  D >. )
3331, 32impbii 188 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109   {csn 4032   {cpr 4034   <.cop 4038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039
This theorem is referenced by:  opthg  4731  otth2  4737  copsexg  4741  copsexgOLD  4742  copsex4g  4745  opcom  4750  moop2  4751  opelopabsbALT  4765  ralxpf  5159  cnvcnvsn  5491  funopg  5626  tpres  6125  oprabv  6344  xpopth  6838  eqop  6839  opiota  6858  soxp  6912  fnwelem  6914  xpdom2  7631  xpf1o  7698  unxpdomlem2  7744  unxpdomlem3  7745  xpwdomg  8029  fseqenlem1  8422  iundom2g  8932  eqresr  9531  cnref1o  11240  hashfun  12499  fsumcom2  13601  fprodcom2  13800  xpnnenOLD  13955  qredeu  14260  qnumdenbi  14289  crt  14320  prmreclem3  14448  imasaddfnlem  14945  dprd2da  17218  dprd2d2  17220  ucnima  20910  numclwlk1lem2f1  25221  br8d  27606  xppreima2  27636  aciunf1lem  27656  ofpreima  27661  erdszelem9  28840  msubff1  29113  mvhf1  29116  brtp  29396  br8  29403  br6  29404  br4  29405  brsegle  29963  f1opr  30420  pellexlem3  30971  pellex  30975  opelopab4  33467  dib1dim  37035  diclspsn  37064  dihopelvalcpre  37118  dihmeetlem4preN  37176  dihmeetlem13N  37189  dih1dimatlem  37199  dihatlat  37204  snhesn  37999
  Copyright terms: Public domain W3C validator