MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth Structured version   Unicode version

Theorem opth 4707
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opth  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 opth1.1 . . . 4  |-  A  e. 
_V
2 opth1.2 . . . 4  |-  B  e. 
_V
31, 2opth1 4706 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )
41, 2opi1 4700 . . . . . . 7  |-  { A }  e.  <. A ,  B >.
5 id 22 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  D >. )
64, 5syl5eleq 2535 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  <. C ,  D >. )
7 oprcl 4223 . . . . . 6  |-  ( { A }  e.  <. C ,  D >.  ->  ( C  e.  _V  /\  D  e.  _V ) )
86, 7syl 16 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( C  e.  _V  /\  D  e.  _V )
)
98simprd 463 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  D  e.  _V )
103opeq1d 4204 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  B >. )
1110, 5eqtr3d 2484 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  = 
<. C ,  D >. )
128simpld 459 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  _V )
13 dfopg 4196 . . . . . . . 8  |-  ( ( C  e.  _V  /\  B  e.  _V )  -> 
<. C ,  B >.  =  { { C } ,  { C ,  B } } )
1412, 2, 13sylancl 662 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  B >.  =  { { C } ,  { C ,  B } } )
1511, 14eqtr3d 2484 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  B } } )
16 dfopg 4196 . . . . . . 7  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  =  { { C } ,  { C ,  D } } )
178, 16syl 16 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  D } } )
1815, 17eqtr3d 2484 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } } )
19 prex 4675 . . . . . 6  |-  { C ,  B }  e.  _V
20 prex 4675 . . . . . 6  |-  { C ,  D }  e.  _V
2119, 20preqr2 4186 . . . . 5  |-  ( { { C } ,  { C ,  B } }  =  { { C } ,  { C ,  D } }  ->  { C ,  B }  =  { C ,  D } )
2218, 21syl 16 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { C ,  B }  =  { C ,  D } )
23 preq2 4091 . . . . . . 7  |-  ( x  =  D  ->  { C ,  x }  =  { C ,  D }
)
2423eqeq2d 2455 . . . . . 6  |-  ( x  =  D  ->  ( { C ,  B }  =  { C ,  x } 
<->  { C ,  B }  =  { C ,  D } ) )
25 eqeq2 2456 . . . . . 6  |-  ( x  =  D  ->  ( B  =  x  <->  B  =  D ) )
2624, 25imbi12d 320 . . . . 5  |-  ( x  =  D  ->  (
( { C ,  B }  =  { C ,  x }  ->  B  =  x )  <-> 
( { C ,  B }  =  { C ,  D }  ->  B  =  D ) ) )
27 vex 3096 . . . . . 6  |-  x  e. 
_V
282, 27preqr2 4186 . . . . 5  |-  ( { C ,  B }  =  { C ,  x }  ->  B  =  x )
2926, 28vtoclg 3151 . . . 4  |-  ( D  e.  _V  ->  ( { C ,  B }  =  { C ,  D }  ->  B  =  D ) )
309, 22, 29sylc 60 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  B  =  D )
313, 30jca 532 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( A  =  C  /\  B  =  D ) )
32 opeq12 4200 . 2  |-  ( ( A  =  C  /\  B  =  D )  -> 
<. A ,  B >.  = 
<. C ,  D >. )
3331, 32impbii 188 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802   _Vcvv 3093   {csn 4010   {cpr 4012   <.cop 4016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-rab 2800  df-v 3095  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017
This theorem is referenced by:  opthg  4708  otth2  4714  copsexg  4718  copsexgOLD  4719  copsex4g  4722  opcom  4727  moop2  4728  opelopabsbALT  4742  ralxpf  5135  cnvcnvsn  5471  funopg  5606  oprabv  6326  xpopth  6820  eqop  6821  opiota  6840  soxp  6894  fnwelem  6896  xpdom2  7610  xpf1o  7677  unxpdomlem2  7723  unxpdomlem3  7724  xpwdomg  8009  fseqenlem1  8403  iundom2g  8913  eqresr  9512  cnref1o  11219  hashfun  12469  fsumcom2  13563  xpnnenOLD  13815  qredeu  14120  qnumdenbi  14149  crt  14180  prmreclem3  14308  imasaddfnlem  14797  dprd2da  16959  dprd2d2  16961  ucnima  20650  numclwlk1lem2f1  24959  br8d  27328  xppreima2  27353  ofpreima  27372  erdszelem9  28509  msubff1  28782  mvhf1  28785  fprodcom2  29082  brtp  29146  br8  29153  br6  29154  br4  29155  brsegle  29726  f1opr  30183  pellexlem3  30735  pellex  30739  tpres  32386  opelopab4  33032  dib1dim  36594  diclspsn  36623  dihopelvalcpre  36677  dihmeetlem4preN  36735  dihmeetlem13N  36748  dih1dimatlem  36758  dihatlat  36763
  Copyright terms: Public domain W3C validator