MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrval Structured version   Unicode version

Theorem opsrval 17905
Description: The value of the "ordered power series" function. This is the same as mPwSer psrval 17777, but with the addition of a well-order on  I we can turn a strict order on 
R into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrval.s  |-  S  =  ( I mPwSer  R )
opsrval.o  |-  O  =  ( ( I ordPwSer  R
) `  T )
opsrval.b  |-  B  =  ( Base `  S
)
opsrval.q  |-  .<  =  ( lt `  R )
opsrval.c  |-  C  =  ( T  <bag  I )
opsrval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
opsrval.l  |-  .<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( (
x `  z )  .<  ( y `  z
)  /\  A. w  e.  D  ( w C z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }
opsrval.i  |-  ( ph  ->  I  e.  V )
opsrval.r  |-  ( ph  ->  R  e.  W )
opsrval.t  |-  ( ph  ->  T  C_  ( I  X.  I ) )
Assertion
Ref Expression
opsrval  |-  ( ph  ->  O  =  ( S sSet  <. ( le `  ndx ) ,  .<_  >. )
)
Distinct variable groups:    w, h, x, y, z, I    ph, w, x, y, z    w, D, z    w, T, x, y, z    w, R, x, y, z
Allowed substitution hints:    ph( h)    B( x, y, z, w, h)    C( x, y, z, w, h)    D( x, y, h)    R( h)    S( x, y, z, w, h)    .< ( x, y, z, w, h)    T( h)   
.<_ ( x, y, z, w, h)    O( x, y, z, w, h)    V( x, y, z, w, h)    W( x, y, z, w, h)

Proof of Theorem opsrval
Dummy variables  r 
i  p  s  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrval.o . 2  |-  O  =  ( ( I ordPwSer  R
) `  T )
2 opsrval.i . . . . 5  |-  ( ph  ->  I  e.  V )
3 elex 3117 . . . . 5  |-  ( I  e.  V  ->  I  e.  _V )
42, 3syl 16 . . . 4  |-  ( ph  ->  I  e.  _V )
5 opsrval.r . . . . 5  |-  ( ph  ->  R  e.  W )
6 elex 3117 . . . . 5  |-  ( R  e.  W  ->  R  e.  _V )
75, 6syl 16 . . . 4  |-  ( ph  ->  R  e.  _V )
8 xpexg 6704 . . . . . 6  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( I  X.  I
)  e.  _V )
92, 2, 8syl2anc 661 . . . . 5  |-  ( ph  ->  ( I  X.  I
)  e.  _V )
10 pwexg 4626 . . . . 5  |-  ( ( I  X.  I )  e.  _V  ->  ~P ( I  X.  I
)  e.  _V )
11 mptexg 6123 . . . . 5  |-  ( ~P ( I  X.  I
)  e.  _V  ->  ( r  e.  ~P (
I  X.  I ) 
|->  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) )  e.  _V )
129, 10, 113syl 20 . . . 4  |-  ( ph  ->  ( r  e.  ~P ( I  X.  I
)  |->  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) )  e.  _V )
13 simpl 457 . . . . . . . 8  |-  ( ( i  =  I  /\  s  =  R )  ->  i  =  I )
1413, 13xpeq12d 5019 . . . . . . 7  |-  ( ( i  =  I  /\  s  =  R )  ->  ( i  X.  i
)  =  ( I  X.  I ) )
1514pweqd 4010 . . . . . 6  |-  ( ( i  =  I  /\  s  =  R )  ->  ~P ( i  X.  i )  =  ~P ( I  X.  I
) )
16 ovex 6302 . . . . . . . 8  |-  ( i mPwSer 
s )  e.  _V
1716a1i 11 . . . . . . 7  |-  ( ( i  =  I  /\  s  =  R )  ->  ( i mPwSer  s )  e.  _V )
18 id 22 . . . . . . . . . 10  |-  ( p  =  ( i mPwSer  s
)  ->  p  =  ( i mPwSer  s )
)
19 oveq12 6286 . . . . . . . . . 10  |-  ( ( i  =  I  /\  s  =  R )  ->  ( i mPwSer  s )  =  ( I mPwSer  R
) )
2018, 19sylan9eqr 2525 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  p  =  ( I mPwSer  R ) )
21 opsrval.s . . . . . . . . 9  |-  S  =  ( I mPwSer  R )
2220, 21syl6eqr 2521 . . . . . . . 8  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  p  =  S )
2322fveq2d 5863 . . . . . . . . . . . . 13  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( Base `  p )  =  (
Base `  S )
)
24 opsrval.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  S
)
2523, 24syl6eqr 2521 . . . . . . . . . . . 12  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( Base `  p )  =  B )
2625sseq2d 3527 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( {
x ,  y } 
C_  ( Base `  p
)  <->  { x ,  y }  C_  B )
)
27 ovex 6302 . . . . . . . . . . . . . . 15  |-  ( NN0 
^m  i )  e. 
_V
2827rabex 4593 . . . . . . . . . . . . . 14  |-  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V
2928a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V )
3013adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  i  =  I )
3130oveq2d 6293 . . . . . . . . . . . . . . 15  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( NN0  ^m  i )  =  ( NN0  ^m  I ) )
32 rabeq 3102 . . . . . . . . . . . . . . 15  |-  ( ( NN0  ^m  i )  =  ( NN0  ^m  I )  ->  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } )
3331, 32syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin } )
34 opsrval.d . . . . . . . . . . . . . 14  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
3533, 34syl6eqr 2521 . . . . . . . . . . . . 13  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  =  D )
36 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  d  =  D )
37 simpllr 758 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  s  =  R )
3837fveq2d 5863 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  ( lt `  s )  =  ( lt `  R
) )
39 opsrval.q . . . . . . . . . . . . . . . . 17  |-  .<  =  ( lt `  R )
4038, 39syl6eqr 2521 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  ( lt `  s )  = 
.<  )
4140breqd 4453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  (
( x `  z
) ( lt `  s ) ( y `
 z )  <->  ( x `  z )  .<  (
y `  z )
) )
4230adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  i  =  I )
4342oveq2d 6293 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  (
r  <bag  i )  =  ( r  <bag  I ) )
4443breqd 4453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  (
w ( r  <bag  i ) z  <->  w (
r  <bag  I ) z ) )
4544imbi1d 317 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  (
( w ( r  <bag  i ) z  -> 
( x `  w
)  =  ( y `
 w ) )  <-> 
( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
4636, 45raleqbidv 3067 . . . . . . . . . . . . . . 15  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  ( A. w  e.  d 
( w ( r  <bag  i ) z  -> 
( x `  w
)  =  ( y `
 w ) )  <->  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
4741, 46anbi12d 710 . . . . . . . . . . . . . 14  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  (
( ( x `  z ) ( lt
`  s ) ( y `  z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  <->  ( ( x `
 z )  .< 
( y `  z
)  /\  A. w  e.  D  ( w
( r  <bag  I ) z  ->  ( x `  w )  =  ( y `  w ) ) ) ) )
4836, 47rexeqbidv 3068 . . . . . . . . . . . . 13  |-  ( ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s
) )  /\  d  =  D )  ->  ( E. z  e.  d 
( ( x `  z ) ( lt
`  s ) ( y `  z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  <->  E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) )
4929, 35, 48sbcied2 3364 . . . . . . . . . . . 12  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( [. { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]. E. z  e.  d  (
( x `  z
) ( lt `  s ) ( y `
 z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  ->  (
x `  w )  =  ( y `  w ) ) )  <->  E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) )
5049orbi1d 702 . . . . . . . . . . 11  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( ( [. { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]. E. z  e.  d  (
( x `  z
) ( lt `  s ) ( y `
 z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y )  <->  ( E. z  e.  D  ( (
x `  z )  .<  ( y `  z
)  /\  A. w  e.  D  ( w
( r  <bag  I ) z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) )
5126, 50anbi12d 710 . . . . . . . . . 10  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( ( { x ,  y }  C_  ( Base `  p )  /\  ( [. { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]. E. z  e.  d  (
( x `  z
) ( lt `  s ) ( y `
 z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) )  <->  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) ) )
5251opabbidv 4505 . . . . . . . . 9  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  p )  /\  ( [. { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]. E. z  e.  d  (
( x `  z
) ( lt `  s ) ( y `
 z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) } )
5352opeq2d 4215 . . . . . . . 8  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  <. ( le
`  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  p )  /\  ( [. { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]. E. z  e.  d  ( ( x `
 z ) ( lt `  s ) ( y `  z
)  /\  A. w  e.  d  ( w
( r  <bag  i ) z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >.  =  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. )
5422, 53oveq12d 6295 . . . . . . 7  |-  ( ( ( i  =  I  /\  s  =  R )  /\  p  =  ( i mPwSer  s ) )  ->  ( p sSet  <.
( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  p )  /\  ( [. { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]. E. z  e.  d  (
( x `  z
) ( lt `  s ) ( y `
 z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. )  =  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) )
5517, 54csbied 3457 . . . . . 6  |-  ( ( i  =  I  /\  s  =  R )  ->  [_ ( i mPwSer  s
)  /  p ]_ ( p sSet  <. ( le
`  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  p )  /\  ( [. { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]. E. z  e.  d  ( ( x `
 z ) ( lt `  s ) ( y `  z
)  /\  A. w  e.  d  ( w
( r  <bag  i ) z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. )  =  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) )
5615, 55mpteq12dv 4520 . . . . 5  |-  ( ( i  =  I  /\  s  =  R )  ->  ( r  e.  ~P ( i  X.  i
)  |->  [_ ( i mPwSer  s
)  /  p ]_ ( p sSet  <. ( le
`  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  p )  /\  ( [. { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]. E. z  e.  d  ( ( x `
 z ) ( lt `  s ) ( y `  z
)  /\  A. w  e.  d  ( w
( r  <bag  i ) z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. ) )  =  ( r  e.  ~P ( I  X.  I
)  |->  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) ) )
57 df-opsr 17775 . . . . 5  |- ordPwSer  =  ( i  e.  _V , 
s  e.  _V  |->  ( r  e.  ~P (
i  X.  i ) 
|->  [_ ( i mPwSer  s
)  /  p ]_ ( p sSet  <. ( le
`  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  p )  /\  ( [. { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]. E. z  e.  d  ( ( x `
 z ) ( lt `  s ) ( y `  z
)  /\  A. w  e.  d  ( w
( r  <bag  i ) z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. ) ) )
5856, 57ovmpt2ga 6409 . . . 4  |-  ( ( I  e.  _V  /\  R  e.  _V  /\  (
r  e.  ~P (
I  X.  I ) 
|->  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) )  e.  _V )  ->  ( I ordPwSer  R
)  =  ( r  e.  ~P ( I  X.  I )  |->  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) ) )
594, 7, 12, 58syl3anc 1223 . . 3  |-  ( ph  ->  ( I ordPwSer  R )  =  ( r  e. 
~P ( I  X.  I )  |->  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. ) ) )
60 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  r  =  T )  ->  r  =  T )
6160oveq1d 6292 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  r  =  T )  ->  (
r  <bag  I )  =  ( T  <bag  I ) )
62 opsrval.c . . . . . . . . . . . . . . 15  |-  C  =  ( T  <bag  I )
6361, 62syl6eqr 2521 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  r  =  T )  ->  (
r  <bag  I )  =  C )
6463breqd 4453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  =  T )  ->  (
w ( r  <bag  I ) z  <->  w C
z ) )
6564imbi1d 317 . . . . . . . . . . . 12  |-  ( (
ph  /\  r  =  T )  ->  (
( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) )  <-> 
( w C z  ->  ( x `  w )  =  ( y `  w ) ) ) )
6665ralbidv 2898 . . . . . . . . . . 11  |-  ( (
ph  /\  r  =  T )  ->  ( A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) )  <->  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) ) )
6766anbi2d 703 . . . . . . . . . 10  |-  ( (
ph  /\  r  =  T )  ->  (
( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  <->  ( ( x `
 z )  .< 
( y `  z
)  /\  A. w  e.  D  ( w C z  ->  (
x `  w )  =  ( y `  w ) ) ) ) )
6867rexbidv 2968 . . . . . . . . 9  |-  ( (
ph  /\  r  =  T )  ->  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  <->  E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) ) ) )
6968orbi1d 702 . . . . . . . 8  |-  ( (
ph  /\  r  =  T )  ->  (
( E. z  e.  D  ( ( x `
 z )  .< 
( y `  z
)  /\  A. w  e.  D  ( w
( r  <bag  I ) z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y )  <->  ( E. z  e.  D  (
( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) )
7069anbi2d 703 . . . . . . 7  |-  ( (
ph  /\  r  =  T )  ->  (
( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `
 z )  .< 
( y `  z
)  /\  A. w  e.  D  ( w
( r  <bag  I ) z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) )  <-> 
( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `
 z )  .< 
( y `  z
)  /\  A. w  e.  D  ( w C z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) ) )
7170opabbidv 4505 . . . . . 6  |-  ( (
ph  /\  r  =  T )  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } )
72 opsrval.l . . . . . 6  |-  .<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( (
x `  z )  .<  ( y `  z
)  /\  A. w  e.  D  ( w C z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }
7371, 72syl6eqr 2521 . . . . 5  |-  ( (
ph  /\  r  =  T )  ->  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }  =  .<_  )
7473opeq2d 4215 . . . 4  |-  ( (
ph  /\  r  =  T )  ->  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>.  =  <. ( le
`  ndx ) ,  .<_  >.
)
7574oveq2d 6293 . . 3  |-  ( (
ph  /\  r  =  T )  ->  ( S sSet  <. ( le `  ndx ) ,  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w ( r  <bag  I ) z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) ) }
>. )  =  ( S sSet  <. ( le `  ndx ) ,  .<_  >. )
)
76 opsrval.t . . . 4  |-  ( ph  ->  T  C_  ( I  X.  I ) )
77 elpw2g 4605 . . . . 5  |-  ( ( I  X.  I )  e.  _V  ->  ( T  e.  ~P (
I  X.  I )  <-> 
T  C_  ( I  X.  I ) ) )
789, 77syl 16 . . . 4  |-  ( ph  ->  ( T  e.  ~P ( I  X.  I
)  <->  T  C_  ( I  X.  I ) ) )
7976, 78mpbird 232 . . 3  |-  ( ph  ->  T  e.  ~P (
I  X.  I ) )
80 ovex 6302 . . . 4  |-  ( S sSet  <. ( le `  ndx ) ,  .<_  >. )  e.  _V
8180a1i 11 . . 3  |-  ( ph  ->  ( S sSet  <. ( le `  ndx ) , 
.<_  >. )  e.  _V )
8259, 75, 79, 81fvmptd 5948 . 2  |-  ( ph  ->  ( ( I ordPwSer  R
) `  T )  =  ( S sSet  <. ( le `  ndx ) ,  .<_  >. ) )
831, 82syl5eq 2515 1  |-  ( ph  ->  O  =  ( S sSet  <. ( le `  ndx ) ,  .<_  >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2809   E.wrex 2810   {crab 2813   _Vcvv 3108   [.wsbc 3326   [_csb 3430    C_ wss 3471   ~Pcpw 4005   {cpr 4024   <.cop 4028   class class class wbr 4442   {copab 4499    |-> cmpt 4500    X. cxp 4992   `'ccnv 4993   "cima 4997   ` cfv 5581  (class class class)co 6277    ^m cmap 7412   Fincfn 7508   NNcn 10527   NN0cn0 10786   ndxcnx 14478   sSet csts 14479   Basecbs 14481   lecple 14553   ltcplt 15419   mPwSer cmps 17766    <bag cltb 17769   ordPwSer copws 17770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-opsr 17775
This theorem is referenced by:  opsrle  17906  opsrval2  17907
  Copyright terms: Public domain W3C validator