HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem6 Structured version   Unicode version

Theorem opsqrlem6 27042
Description: Lemma for opsqri . (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1  |-  T  e. 
HrmOp
opsqrlem2.2  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
opsqrlem2.3  |-  F  =  seq 1 ( S ,  ( NN  X.  { 0hop } ) )
opsqrlem6.4  |-  T  <_op  Iop
Assertion
Ref Expression
opsqrlem6  |-  ( N  e.  NN  ->  ( F `  N )  <_op  Iop  )
Distinct variable group:    x, y, T
Allowed substitution hints:    S( x, y)    F( x, y)    N( x, y)

Proof of Theorem opsqrlem6
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5856 . . 3  |-  ( j  =  1  ->  ( F `  j )  =  ( F ` 
1 ) )
21breq1d 4447 . 2  |-  ( j  =  1  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  1 )  <_op  Iop  ) )
3 fveq2 5856 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( F `  j )  =  ( F `  ( k  +  1 ) ) )
43breq1d 4447 . 2  |-  ( j  =  ( k  +  1 )  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  ( k  +  1 ) )  <_op  Iop  )
)
5 fveq2 5856 . . 3  |-  ( j  =  N  ->  ( F `  j )  =  ( F `  N ) )
65breq1d 4447 . 2  |-  ( j  =  N  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  N )  <_op  Iop  )
)
7 opsqrlem2.1 . . . 4  |-  T  e. 
HrmOp
8 opsqrlem2.2 . . . 4  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
9 opsqrlem2.3 . . . 4  |-  F  =  seq 1 ( S ,  ( NN  X.  { 0hop } ) )
107, 8, 9opsqrlem2 27038 . . 3  |-  ( F `
 1 )  = 
0hop
11 idleop 27028 . . 3  |-  0hop  <_op  Iop
1210, 11eqbrtri 4456 . 2  |-  ( F `
 1 )  <_op  Iop
13 idhmop 26879 . . . . . . . 8  |-  Iop  e.  HrmOp
147, 8, 9opsqrlem4 27040 . . . . . . . . 9  |-  F : NN
--> HrmOp
1514ffvelrni 6015 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  e.  HrmOp )
16 hmopd 26919 . . . . . . . 8  |-  ( (  Iop  e.  HrmOp  /\  ( F `  k )  e.  HrmOp )  ->  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )
1713, 15, 16sylancr 663 . . . . . . 7  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )
18 eqid 2443 . . . . . . . 8  |-  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  =  ( (  Iop  -op  ( F `  k )
)  o.  (  Iop 
-op  ( F `  k ) ) )
19 hmopco 26920 . . . . . . . 8  |-  ( ( (  Iop  -op  ( F `  k )
)  e.  HrmOp  /\  (  Iop  -op  ( F `  k ) )  e. 
HrmOp  /\  ( (  Iop 
-op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  =  ( (  Iop  -op  ( F `  k )
)  o.  (  Iop 
-op  ( F `  k ) ) ) )  ->  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp )
2018, 19mp3an3 1314 . . . . . . 7  |-  ( ( (  Iop  -op  ( F `  k )
)  e.  HrmOp  /\  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )  ->  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp )
2117, 17, 20syl2anc 661 . . . . . 6  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  e.  HrmOp )
22 leopsq 27026 . . . . . . 7  |-  ( (  Iop  -op  ( F `  k ) )  e. 
HrmOp  ->  0hop  <_op  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) ) )
2317, 22syl 16 . . . . . 6  |-  ( k  e.  NN  ->  0hop  <_op  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) ) )
24 opsqrlem6.4 . . . . . . . 8  |-  T  <_op  Iop
25 leop3 27022 . . . . . . . . 9  |-  ( ( T  e.  HrmOp  /\  Iop  e.  HrmOp )  ->  ( T  <_op  Iop  <->  0hop  <_op  (  Iop  -op 
T ) ) )
267, 13, 25mp2an 672 . . . . . . . 8  |-  ( T 
<_op  Iop  <->  0hop  <_op  (  Iop  -op 
T ) )
2724, 26mpbi 208 . . . . . . 7  |-  0hop  <_op  (  Iop  -op  T )
28 hmopd 26919 . . . . . . . . 9  |-  ( (  Iop  e.  HrmOp  /\  T  e.  HrmOp )  ->  (  Iop  -op  T )  e. 
HrmOp )
2913, 7, 28mp2an 672 . . . . . . . 8  |-  (  Iop 
-op  T )  e. 
HrmOp
30 leopadd 27029 . . . . . . . 8  |-  ( ( ( ( (  Iop 
-op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp  /\  (  Iop  -op  T
)  e.  HrmOp )  /\  ( 0hop  <_op  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  /\  0hop  <_op 
(  Iop  -op  T ) ) )  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
3129, 30mpanl2 681 . . . . . . 7  |-  ( ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  e.  HrmOp  /\  ( 0hop  <_op 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  /\  0hop  <_op  (  Iop 
-op  T ) ) )  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
3227, 31mpanr2 684 . . . . . 6  |-  ( ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  e.  HrmOp  /\  0hop  <_op  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) ) )  ->  0hop  <_op  ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  +op  (  Iop  -op  T ) ) )
3321, 23, 32syl2anc 661 . . . . 5  |-  ( k  e.  NN  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
34 2cn 10613 . . . . . . . . . 10  |-  2  e.  CC
35 hmopf 26771 . . . . . . . . . . 11  |-  ( ( F `  k )  e.  HrmOp  ->  ( F `  k ) : ~H --> ~H )
3615, 35syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( F `  k ) : ~H --> ~H )
37 homulcl 26656 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( F `  k ) : ~H --> ~H )  ->  ( 2  .op  ( F `  k )
) : ~H --> ~H )
3834, 36, 37sylancr 663 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
2  .op  ( F `  k ) ) : ~H --> ~H )
39 hmopf 26771 . . . . . . . . . . 11  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
407, 39ax-mp 5 . . . . . . . . . 10  |-  T : ~H
--> ~H
41 fco 5731 . . . . . . . . . . 11  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  ->  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
4236, 36, 41syl2anc 661 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  ( F `
 k ) ) : ~H --> ~H )
43 hosubcl 26670 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H )
4440, 42, 43sylancr 663 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) : ~H --> ~H )
45 hmopf 26771 . . . . . . . . . . . 12  |-  (  Iop 
e.  HrmOp  ->  Iop  : ~H --> ~H )
4613, 45ax-mp 5 . . . . . . . . . . 11  |-  Iop  : ~H
--> ~H
47 homulcl 26656 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  Iop  : ~H --> ~H )  ->  ( 2  .op  Iop  ) : ~H --> ~H )
4834, 46, 47mp2an 672 . . . . . . . . . 10  |-  ( 2 
.op  Iop  ) : ~H --> ~H
49 hosubsub4 26715 . . . . . . . . . 10  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
5048, 49mp3an1 1312 . . . . . . . . 9  |-  ( ( ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
5138, 44, 50syl2anc 661 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
52 hosubcl 26670 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H )
5342, 38, 52syl2anc 661 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) : ~H --> ~H )
54 hoadd32 26680 . . . . . . . . . . . . . . 15  |-  ( (  Iop  : ~H --> ~H  /\  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H  /\  Iop  : ~H --> ~H )  ->  ( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  =  ( (  Iop 
+op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
5546, 46, 54mp3an13 1316 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) : ~H --> ~H  ->  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  Iop  )  =  ( (  Iop 
+op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
5653, 55syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( (  Iop  +op  Iop  )  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) )
57 ho2times 26716 . . . . . . . . . . . . . . 15  |-  (  Iop 
: ~H --> ~H  ->  ( 2  .op  Iop  )  =  (  Iop  +op  Iop  ) )
5846, 57ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2 
.op  Iop  )  =  (  Iop  +op  Iop  )
5958oveq1i 6291 . . . . . . . . . . . . 13  |-  ( ( 2  .op  Iop  )  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  =  ( (  Iop  +op  Iop  )  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )
6056, 59syl6eqr 2502 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( ( 2  .op  Iop  )  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) )
61 hoaddsubass 26712 . . . . . . . . . . . . . 14  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6248, 61mp3an1 1312 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6342, 38, 62syl2anc 661 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6460, 63eqtr4d 2487 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) ) )
6564oveq1d 6296 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  -op  T ) )
66 hoaddcl 26655 . . . . . . . . . . . 12  |-  ( (  Iop  : ~H --> ~H  /\  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H )  ->  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) : ~H --> ~H )
6746, 53, 66sylancr 663 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) : ~H --> ~H )
68 hoaddsubass 26712 . . . . . . . . . . . 12  |-  ( ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) : ~H --> ~H  /\  Iop  : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( ( (  Iop 
+op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) )  +op  Iop  )  -op  T )  =  ( (  Iop 
+op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) )  +op  (  Iop  -op  T )
) )
6946, 40, 68mp3an23 1317 . . . . . . . . . . 11  |-  ( (  Iop  +op  ( (
( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) : ~H --> ~H  ->  ( ( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
7067, 69syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
71 hoaddcl 26655 . . . . . . . . . . . 12  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H )
7248, 42, 71sylancr 663 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  .op  Iop  )  +op  ( ( F `
 k )  o.  ( F `  k
) ) ) : ~H --> ~H )
73 hosubsub4 26715 . . . . . . . . . . . 12  |-  ( ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( ( ( ( 2  .op  Iop  )  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7440, 73mp3an3 1314 . . . . . . . . . . 11  |-  ( ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( ( 2  .op  Iop  )  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7572, 38, 74syl2anc 661 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7665, 70, 753eqtr3d 2492 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
77 hosubadd4 26711 . . . . . . . . . . . 12  |-  ( ( ( ( 2  .op 
Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k
) ) : ~H --> ~H )  /\  ( T : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
)  ->  ( (
( 2  .op  Iop  )  -op  ( 2  .op  ( F `  k
) ) )  -op  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7840, 77mpanr1 683 . . . . . . . . . . 11  |-  ( ( ( ( 2  .op 
Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k
) ) : ~H --> ~H )  /\  (
( F `  k
)  o.  ( F `
 k ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7948, 78mpanl1 680 . . . . . . . . . 10  |-  ( ( ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
8038, 42, 79syl2anc 661 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
8176, 80eqtr4d 2487 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )
82 halfcn 10762 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  CC
83 homulcl 26656 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )
8482, 44, 83sylancr 663 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) : ~H --> ~H )
85 hoadddi 26700 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( F `  k ) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )  =  ( ( 2  .op  ( F `
 k ) ) 
+op  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )
8634, 85mp3an1 1312 . . . . . . . . . . 11  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )  =  ( ( 2  .op  ( F `
 k ) ) 
+op  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )
8736, 84, 86syl2anc 661 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )  =  ( ( 2  .op  ( F `  k )
)  +op  ( 2 
.op  ( ( 1  /  2 )  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) ) )
88 2ne0 10635 . . . . . . . . . . . . . 14  |-  2  =/=  0
8934, 88recidi 10282 . . . . . . . . . . . . 13  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
9089oveq1i 6291 . . . . . . . . . . . 12  |-  ( ( 2  x.  ( 1  /  2 ) ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( 1  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )
91 homulass 26699 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( 2  x.  ( 1  /  2
) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
9234, 82, 91mp3an12 1315 . . . . . . . . . . . . 13  |-  ( ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H  ->  ( ( 2  x.  (
1  /  2 ) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
9344, 92syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 2  x.  (
1  /  2 ) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
94 homulid2 26697 . . . . . . . . . . . . 13  |-  ( ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H  ->  ( 1  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
9544, 94syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )
9690, 93, 953eqtr3a 2508 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  .op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )  =  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
9796oveq2d 6297 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  .op  ( F `  k )
)  +op  ( 2 
.op  ( ( 1  /  2 )  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) )  =  ( ( 2  .op  ( F `  k
) )  +op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) )
9887, 97eqtrd 2484 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )  =  ( ( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )
9998oveq2d 6297 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )  =  ( ( 2  .op  Iop  )  -op  ( ( 2 
.op  ( F `  k ) )  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) )
10051, 81, 993eqtr4d 2494 . . . . . . 7  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) ) )
101 hoaddcl 26655 . . . . . . . . 9  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )
10236, 84, 101syl2anc 661 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )
103 hosubdi 26705 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  Iop  : ~H --> ~H  /\  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (  Iop  -op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )  =  ( ( 2  .op 
Iop  )  -op  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
10434, 46, 103mp3an12 1315 . . . . . . . 8  |-  ( ( ( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H  ->  ( 2  .op  (  Iop 
-op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )  =  ( ( 2  .op 
Iop  )  -op  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
105102, 104syl 16 . . . . . . 7  |-  ( k  e.  NN  ->  (
2  .op  (  Iop  -op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )  =  ( ( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) ) )
106100, 105eqtr4d 2487 . . . . . 6  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( 2  .op  (  Iop 
-op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
107 hosubcl 26670 . . . . . . . . . 10  |-  ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  ->  (  Iop  -op  ( F `  k )
) : ~H --> ~H )
10846, 36, 107sylancr 663 . . . . . . . . 9  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )
109 hocsubdir 26682 . . . . . . . . . 10  |-  ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H  /\  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )  -> 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  (  Iop  -op  ( F `  k ) ) )  -op  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) ) ) )
11046, 109mp3an1 1312 . . . . . . . . 9  |-  ( ( ( F `  k
) : ~H --> ~H  /\  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )  -> 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  (  Iop  -op  ( F `  k ) ) )  -op  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) ) ) )
11136, 108, 110syl2anc 661 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) ) )
112 hmoplin 26839 . . . . . . . . . . . . . . 15  |-  (  Iop 
e.  HrmOp  ->  Iop  e.  LinOp )
11313, 112ax-mp 5 . . . . . . . . . . . . . 14  |-  Iop  e.  LinOp
114 hoddi 26887 . . . . . . . . . . . . . 14  |-  ( (  Iop  e.  LinOp  /\  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  -> 
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop 
o.  Iop  )  -op  (  Iop  o.  ( F `
 k ) ) ) )
115113, 46, 114mp3an12 1315 . . . . . . . . . . . . 13  |-  ( ( F `  k ) : ~H --> ~H  ->  (  Iop  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  Iop  )  -op  (  Iop  o.  ( F `
 k ) ) ) )
11636, 115syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop  o.  Iop  )  -op  (  Iop  o.  ( F `  k ) ) ) )
11746hoid1i 26686 . . . . . . . . . . . . . 14  |-  (  Iop 
o.  Iop  )  =  Iop
118117a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (  Iop  o.  Iop  )  =  Iop  )
119 hoico2 26654 . . . . . . . . . . . . . 14  |-  ( ( F `  k ) : ~H --> ~H  ->  (  Iop  o.  ( F `
 k ) )  =  ( F `  k ) )
12036, 119syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (  Iop  o.  ( F `  k ) )  =  ( F `  k
) )
121118, 120oveq12d 6299 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
(  Iop  o.  Iop  )  -op  (  Iop  o.  ( F `  k ) ) )  =  (  Iop  -op  ( F `  k ) ) )
122116, 121eqtrd 2484 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  (  Iop  -op  ( F `  k ) ) )
123 hmoplin 26839 . . . . . . . . . . . . . 14  |-  ( ( F `  k )  e.  HrmOp  ->  ( F `  k )  e.  LinOp )
12415, 123syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  ( F `  k )  e.  LinOp )
125 hoddi 26887 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  e.  LinOp  /\  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  -> 
( ( F `  k )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
12646, 125mp3an2 1313 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  LinOp  /\  ( F `  k ) : ~H --> ~H )  -> 
( ( F `  k )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
127124, 36, 126syl2anc 661 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
128 hoico1 26653 . . . . . . . . . . . . . 14  |-  ( ( F `  k ) : ~H --> ~H  ->  ( ( F `  k
)  o.  Iop  )  =  ( F `  k ) )
12936, 128syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  Iop  )  =  ( F `  k ) )
130129oveq1d 6296 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( F `  k )  o.  Iop  )  -op  ( ( F `
 k )  o.  ( F `  k
) ) )  =  ( ( F `  k )  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )
131127, 130eqtrd 2484 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( ( F `
 k )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
132122, 131oveq12d 6299 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  ( (  Iop  -op  ( F `  k ) )  -op  ( ( F `  k )  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) )
13336, 46jctil 537 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )
)
134 hosubadd4 26711 . . . . . . . . . . 11  |-  ( ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  /\  (
( F `  k
) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
)  ->  ( (  Iop  -op  ( F `  k ) )  -op  ( ( F `  k )  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )  =  ( (  Iop  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( F `  k ) 
+op  ( F `  k ) ) ) )
135133, 36, 42, 134syl12anc 1227 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  -op  ( ( F `
 k )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
136132, 135eqtrd 2484 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
137 ho2times 26716 . . . . . . . . . . 11  |-  ( ( F `  k ) : ~H --> ~H  ->  ( 2  .op  ( F `
 k ) )  =  ( ( F `
 k )  +op  ( F `  k ) ) )
13836, 137syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  .op  ( F `  k ) )  =  ( ( F `  k )  +op  ( F `  k )
) )
139138oveq2d 6297 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( F `  k )  o.  ( F `  k ) ) )  -op  ( 2  .op  ( F `  k
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
140 hoaddsubass 26712 . . . . . . . . . . 11  |-  ( (  Iop  : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  =  (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) ) )
14146, 140mp3an1 1312 . . . . . . . . . 10  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  =  (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) ) )
14242, 38, 141syl2anc 661 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( F `  k )  o.  ( F `  k ) ) )  -op  ( 2  .op  ( F `  k
) ) )  =  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
143136, 139, 1423eqtr2d 2490 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
144111, 143eqtrd 2484 . . . . . . 7  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  =  (  Iop  +op  ( (
( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) )
145144oveq1d 6296 . . . . . 6  |-  ( k  e.  NN  ->  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
1467, 8, 9opsqrlem5 27041 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
147146oveq2d 6297 . . . . . . 7  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  =  (  Iop  -op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )
148147oveq2d 6297 . . . . . 6  |-  ( k  e.  NN  ->  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) )  =  ( 2  .op  (  Iop  -op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
149106, 145, 1483eqtr4d 2494 . . . . 5  |-  ( k  e.  NN  ->  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) )  =  ( 2  .op  (  Iop 
-op  ( F `  ( k  +  1 ) ) ) ) )
15033, 149breqtrd 4461 . . . 4  |-  ( k  e.  NN  ->  0hop  <_op  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) ) )
151 peano2nn 10555 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
15214ffvelrni 6015 . . . . . . 7  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  HrmOp )
153151, 152syl 16 . . . . . 6  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  HrmOp )
154 hmopd 26919 . . . . . 6  |-  ( (  Iop  e.  HrmOp  /\  ( F `  ( k  +  1 ) )  e.  HrmOp )  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp )
15513, 153, 154sylancr 663 . . . . 5  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp )
156 2re 10612 . . . . . 6  |-  2  e.  RR
157 2pos 10634 . . . . . 6  |-  0  <  2
158 leopmul 27031 . . . . . 6  |-  ( ( 2  e.  RR  /\  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp  /\  0  <  2
)  ->  ( 0hop  <_op 
(  Iop  -op  ( F `
 ( k  +  1 ) ) )  <->  0hop  <_op  ( 2  .op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) ) )
159156, 157, 158mp3an13 1316 . . . . 5  |-  ( (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp  ->  ( 0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) )  <->  0hop  <_op  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) ) ) )
160155, 159syl 16 . . . 4  |-  ( k  e.  NN  ->  ( 0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) )  <->  0hop  <_op  ( 2 
.op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) ) )
161150, 160mpbird 232 . . 3  |-  ( k  e.  NN  ->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) )
162 leop3 27022 . . . 4  |-  ( ( ( F `  (
k  +  1 ) )  e.  HrmOp  /\  Iop  e.  HrmOp )  ->  (
( F `  (
k  +  1 ) )  <_op  Iop  <->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) )
163153, 13, 162sylancl 662 . . 3  |-  ( k  e.  NN  ->  (
( F `  (
k  +  1 ) )  <_op  Iop  <->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) )
164161, 163mpbird 232 . 2  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) ) 
<_op  Iop  )
1652, 4, 6, 12, 164nn1suc 10564 1  |-  ( N  e.  NN  ->  ( F `  N )  <_op  Iop  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   {csn 4014   class class class wbr 4437    X. cxp 4987    o. ccom 4993   -->wf 5574   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500    < clt 9631    / cdiv 10213   NNcn 10543   2c2 10592    seqcseq 12089   ~Hchil 25814    +op chos 25833    .op chot 25834    -op chod 25835   0hopch0o 25838    Iop chio 25839   LinOpclo 25842   HrmOpcho 25845    <_op cleo 25853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cc 8818  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575  ax-hilex 25894  ax-hfvadd 25895  ax-hvcom 25896  ax-hvass 25897  ax-hv0cl 25898  ax-hvaddid 25899  ax-hfvmul 25900  ax-hvmulid 25901  ax-hvmulass 25902  ax-hvdistr1 25903  ax-hvdistr2 25904  ax-hvmul0 25905  ax-hfi 25974  ax-his1 25977  ax-his2 25978  ax-his3 25979  ax-his4 25980  ax-hcompl 26097
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-omul 7137  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-acn 8326  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-clim 13293  df-rlim 13294  df-sum 13491  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-cn 19706  df-cnp 19707  df-lm 19708  df-haus 19794  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cfil 21672  df-cau 21673  df-cmet 21674  df-grpo 25171  df-gid 25172  df-ginv 25173  df-gdiv 25174  df-ablo 25262  df-subgo 25282  df-vc 25417  df-nv 25463  df-va 25466  df-ba 25467  df-sm 25468  df-0v 25469  df-vs 25470  df-nmcv 25471  df-ims 25472  df-dip 25589  df-ssp 25613  df-ph 25706  df-cbn 25757  df-hnorm 25863  df-hba 25864  df-hvsub 25866  df-hlim 25867  df-hcau 25868  df-sh 26102  df-ch 26117  df-oc 26148  df-ch0 26149  df-shs 26204  df-pjh 26291  df-hosum 26627  df-homul 26628  df-hodif 26629  df-h0op 26645  df-iop 26646  df-lnop 26738  df-hmop 26741  df-leop 26749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator