HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem6 Structured version   Unicode version

Theorem opsqrlem6 26737
Description: Lemma for opsqri . (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1  |-  T  e. 
HrmOp
opsqrlem2.2  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
opsqrlem2.3  |-  F  =  seq 1 ( S ,  ( NN  X.  { 0hop } ) )
opsqrlem6.4  |-  T  <_op  Iop
Assertion
Ref Expression
opsqrlem6  |-  ( N  e.  NN  ->  ( F `  N )  <_op  Iop  )
Distinct variable group:    x, y, T
Allowed substitution hints:    S( x, y)    F( x, y)    N( x, y)

Proof of Theorem opsqrlem6
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5864 . . 3  |-  ( j  =  1  ->  ( F `  j )  =  ( F ` 
1 ) )
21breq1d 4457 . 2  |-  ( j  =  1  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  1 )  <_op  Iop  ) )
3 fveq2 5864 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( F `  j )  =  ( F `  ( k  +  1 ) ) )
43breq1d 4457 . 2  |-  ( j  =  ( k  +  1 )  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  ( k  +  1 ) )  <_op  Iop  )
)
5 fveq2 5864 . . 3  |-  ( j  =  N  ->  ( F `  j )  =  ( F `  N ) )
65breq1d 4457 . 2  |-  ( j  =  N  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  N )  <_op  Iop  )
)
7 opsqrlem2.1 . . . 4  |-  T  e. 
HrmOp
8 opsqrlem2.2 . . . 4  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
9 opsqrlem2.3 . . . 4  |-  F  =  seq 1 ( S ,  ( NN  X.  { 0hop } ) )
107, 8, 9opsqrlem2 26733 . . 3  |-  ( F `
 1 )  = 
0hop
11 idleop 26723 . . 3  |-  0hop  <_op  Iop
1210, 11eqbrtri 4466 . 2  |-  ( F `
 1 )  <_op  Iop
13 idhmop 26574 . . . . . . . 8  |-  Iop  e.  HrmOp
147, 8, 9opsqrlem4 26735 . . . . . . . . 9  |-  F : NN
--> HrmOp
1514ffvelrni 6018 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  e.  HrmOp )
16 hmopd 26614 . . . . . . . 8  |-  ( (  Iop  e.  HrmOp  /\  ( F `  k )  e.  HrmOp )  ->  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )
1713, 15, 16sylancr 663 . . . . . . 7  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )
18 eqid 2467 . . . . . . . 8  |-  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  =  ( (  Iop  -op  ( F `  k )
)  o.  (  Iop 
-op  ( F `  k ) ) )
19 hmopco 26615 . . . . . . . 8  |-  ( ( (  Iop  -op  ( F `  k )
)  e.  HrmOp  /\  (  Iop  -op  ( F `  k ) )  e. 
HrmOp  /\  ( (  Iop 
-op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  =  ( (  Iop  -op  ( F `  k )
)  o.  (  Iop 
-op  ( F `  k ) ) ) )  ->  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp )
2018, 19mp3an3 1313 . . . . . . 7  |-  ( ( (  Iop  -op  ( F `  k )
)  e.  HrmOp  /\  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )  ->  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp )
2117, 17, 20syl2anc 661 . . . . . 6  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  e.  HrmOp )
22 leopsq 26721 . . . . . . 7  |-  ( (  Iop  -op  ( F `  k ) )  e. 
HrmOp  ->  0hop  <_op  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) ) )
2317, 22syl 16 . . . . . 6  |-  ( k  e.  NN  ->  0hop  <_op  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) ) )
24 opsqrlem6.4 . . . . . . . 8  |-  T  <_op  Iop
25 leop3 26717 . . . . . . . . 9  |-  ( ( T  e.  HrmOp  /\  Iop  e.  HrmOp )  ->  ( T  <_op  Iop  <->  0hop  <_op  (  Iop  -op 
T ) ) )
267, 13, 25mp2an 672 . . . . . . . 8  |-  ( T 
<_op  Iop  <->  0hop  <_op  (  Iop  -op 
T ) )
2724, 26mpbi 208 . . . . . . 7  |-  0hop  <_op  (  Iop  -op  T )
28 hmopd 26614 . . . . . . . . 9  |-  ( (  Iop  e.  HrmOp  /\  T  e.  HrmOp )  ->  (  Iop  -op  T )  e. 
HrmOp )
2913, 7, 28mp2an 672 . . . . . . . 8  |-  (  Iop 
-op  T )  e. 
HrmOp
30 leopadd 26724 . . . . . . . 8  |-  ( ( ( ( (  Iop 
-op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp  /\  (  Iop  -op  T
)  e.  HrmOp )  /\  ( 0hop  <_op  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  /\  0hop  <_op 
(  Iop  -op  T ) ) )  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
3129, 30mpanl2 681 . . . . . . 7  |-  ( ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  e.  HrmOp  /\  ( 0hop  <_op 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  /\  0hop  <_op  (  Iop 
-op  T ) ) )  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
3227, 31mpanr2 684 . . . . . 6  |-  ( ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  e.  HrmOp  /\  0hop  <_op  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) ) )  ->  0hop  <_op  ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  +op  (  Iop  -op  T ) ) )
3321, 23, 32syl2anc 661 . . . . 5  |-  ( k  e.  NN  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
34 2cn 10602 . . . . . . . . . 10  |-  2  e.  CC
35 hmopf 26466 . . . . . . . . . . 11  |-  ( ( F `  k )  e.  HrmOp  ->  ( F `  k ) : ~H --> ~H )
3615, 35syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( F `  k ) : ~H --> ~H )
37 homulcl 26351 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( F `  k ) : ~H --> ~H )  ->  ( 2  .op  ( F `  k )
) : ~H --> ~H )
3834, 36, 37sylancr 663 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
2  .op  ( F `  k ) ) : ~H --> ~H )
39 hmopf 26466 . . . . . . . . . . 11  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
407, 39ax-mp 5 . . . . . . . . . 10  |-  T : ~H
--> ~H
41 fco 5739 . . . . . . . . . . 11  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  ->  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
4236, 36, 41syl2anc 661 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  ( F `
 k ) ) : ~H --> ~H )
43 hosubcl 26365 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H )
4440, 42, 43sylancr 663 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) : ~H --> ~H )
45 hmopf 26466 . . . . . . . . . . . 12  |-  (  Iop 
e.  HrmOp  ->  Iop  : ~H --> ~H )
4613, 45ax-mp 5 . . . . . . . . . . 11  |-  Iop  : ~H
--> ~H
47 homulcl 26351 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  Iop  : ~H --> ~H )  ->  ( 2  .op  Iop  ) : ~H --> ~H )
4834, 46, 47mp2an 672 . . . . . . . . . 10  |-  ( 2 
.op  Iop  ) : ~H --> ~H
49 hosubsub4 26410 . . . . . . . . . 10  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
5048, 49mp3an1 1311 . . . . . . . . 9  |-  ( ( ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
5138, 44, 50syl2anc 661 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
52 hosubcl 26365 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H )
5342, 38, 52syl2anc 661 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) : ~H --> ~H )
54 hoadd32 26375 . . . . . . . . . . . . . . 15  |-  ( (  Iop  : ~H --> ~H  /\  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H  /\  Iop  : ~H --> ~H )  ->  ( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  =  ( (  Iop 
+op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
5546, 46, 54mp3an13 1315 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) : ~H --> ~H  ->  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  Iop  )  =  ( (  Iop 
+op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
5653, 55syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( (  Iop  +op  Iop  )  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) )
57 ho2times 26411 . . . . . . . . . . . . . . 15  |-  (  Iop 
: ~H --> ~H  ->  ( 2  .op  Iop  )  =  (  Iop  +op  Iop  ) )
5846, 57ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2 
.op  Iop  )  =  (  Iop  +op  Iop  )
5958oveq1i 6292 . . . . . . . . . . . . 13  |-  ( ( 2  .op  Iop  )  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  =  ( (  Iop  +op  Iop  )  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )
6056, 59syl6eqr 2526 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( ( 2  .op  Iop  )  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) )
61 hoaddsubass 26407 . . . . . . . . . . . . . 14  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6248, 61mp3an1 1311 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6342, 38, 62syl2anc 661 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6460, 63eqtr4d 2511 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) ) )
6564oveq1d 6297 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  -op  T ) )
66 hoaddcl 26350 . . . . . . . . . . . 12  |-  ( (  Iop  : ~H --> ~H  /\  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H )  ->  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) : ~H --> ~H )
6746, 53, 66sylancr 663 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) : ~H --> ~H )
68 hoaddsubass 26407 . . . . . . . . . . . 12  |-  ( ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) : ~H --> ~H  /\  Iop  : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( ( (  Iop 
+op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) )  +op  Iop  )  -op  T )  =  ( (  Iop 
+op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) )  +op  (  Iop  -op  T )
) )
6946, 40, 68mp3an23 1316 . . . . . . . . . . 11  |-  ( (  Iop  +op  ( (
( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) : ~H --> ~H  ->  ( ( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
7067, 69syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
71 hoaddcl 26350 . . . . . . . . . . . 12  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H )
7248, 42, 71sylancr 663 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  .op  Iop  )  +op  ( ( F `
 k )  o.  ( F `  k
) ) ) : ~H --> ~H )
73 hosubsub4 26410 . . . . . . . . . . . 12  |-  ( ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( ( ( ( 2  .op  Iop  )  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7440, 73mp3an3 1313 . . . . . . . . . . 11  |-  ( ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( ( 2  .op  Iop  )  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7572, 38, 74syl2anc 661 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7665, 70, 753eqtr3d 2516 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
77 hosubadd4 26406 . . . . . . . . . . . 12  |-  ( ( ( ( 2  .op 
Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k
) ) : ~H --> ~H )  /\  ( T : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
)  ->  ( (
( 2  .op  Iop  )  -op  ( 2  .op  ( F `  k
) ) )  -op  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7840, 77mpanr1 683 . . . . . . . . . . 11  |-  ( ( ( ( 2  .op 
Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k
) ) : ~H --> ~H )  /\  (
( F `  k
)  o.  ( F `
 k ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7948, 78mpanl1 680 . . . . . . . . . 10  |-  ( ( ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
8038, 42, 79syl2anc 661 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
8176, 80eqtr4d 2511 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )
82 halfcn 10751 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  CC
83 homulcl 26351 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )
8482, 44, 83sylancr 663 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) : ~H --> ~H )
85 hoadddi 26395 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( F `  k ) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )  =  ( ( 2  .op  ( F `
 k ) ) 
+op  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )
8634, 85mp3an1 1311 . . . . . . . . . . 11  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )  =  ( ( 2  .op  ( F `
 k ) ) 
+op  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )
8736, 84, 86syl2anc 661 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )  =  ( ( 2  .op  ( F `  k )
)  +op  ( 2 
.op  ( ( 1  /  2 )  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) ) )
88 2ne0 10624 . . . . . . . . . . . . . 14  |-  2  =/=  0
8934, 88recidi 10271 . . . . . . . . . . . . 13  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
9089oveq1i 6292 . . . . . . . . . . . 12  |-  ( ( 2  x.  ( 1  /  2 ) ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( 1  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )
91 homulass 26394 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( 2  x.  ( 1  /  2
) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
9234, 82, 91mp3an12 1314 . . . . . . . . . . . . 13  |-  ( ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H  ->  ( ( 2  x.  (
1  /  2 ) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
9344, 92syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 2  x.  (
1  /  2 ) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
94 homulid2 26392 . . . . . . . . . . . . 13  |-  ( ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H  ->  ( 1  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
9544, 94syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )
9690, 93, 953eqtr3a 2532 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  .op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )  =  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
9796oveq2d 6298 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  .op  ( F `  k )
)  +op  ( 2 
.op  ( ( 1  /  2 )  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) )  =  ( ( 2  .op  ( F `  k
) )  +op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) )
9887, 97eqtrd 2508 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )  =  ( ( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )
9998oveq2d 6298 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )  =  ( ( 2  .op  Iop  )  -op  ( ( 2 
.op  ( F `  k ) )  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) )
10051, 81, 993eqtr4d 2518 . . . . . . 7  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) ) )
101 hoaddcl 26350 . . . . . . . . 9  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )
10236, 84, 101syl2anc 661 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )
103 hosubdi 26400 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  Iop  : ~H --> ~H  /\  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (  Iop  -op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )  =  ( ( 2  .op 
Iop  )  -op  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
10434, 46, 103mp3an12 1314 . . . . . . . 8  |-  ( ( ( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H  ->  ( 2  .op  (  Iop 
-op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )  =  ( ( 2  .op 
Iop  )  -op  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
105102, 104syl 16 . . . . . . 7  |-  ( k  e.  NN  ->  (
2  .op  (  Iop  -op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )  =  ( ( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) ) )
106100, 105eqtr4d 2511 . . . . . 6  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( 2  .op  (  Iop 
-op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
107 hosubcl 26365 . . . . . . . . . 10  |-  ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  ->  (  Iop  -op  ( F `  k )
) : ~H --> ~H )
10846, 36, 107sylancr 663 . . . . . . . . 9  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )
109 hocsubdir 26377 . . . . . . . . . 10  |-  ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H  /\  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )  -> 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  (  Iop  -op  ( F `  k ) ) )  -op  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) ) ) )
11046, 109mp3an1 1311 . . . . . . . . 9  |-  ( ( ( F `  k
) : ~H --> ~H  /\  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )  -> 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  (  Iop  -op  ( F `  k ) ) )  -op  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) ) ) )
11136, 108, 110syl2anc 661 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) ) )
112 hmoplin 26534 . . . . . . . . . . . . . . 15  |-  (  Iop 
e.  HrmOp  ->  Iop  e.  LinOp )
11313, 112ax-mp 5 . . . . . . . . . . . . . 14  |-  Iop  e.  LinOp
114 hoddi 26582 . . . . . . . . . . . . . 14  |-  ( (  Iop  e.  LinOp  /\  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  -> 
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop 
o.  Iop  )  -op  (  Iop  o.  ( F `
 k ) ) ) )
115113, 46, 114mp3an12 1314 . . . . . . . . . . . . 13  |-  ( ( F `  k ) : ~H --> ~H  ->  (  Iop  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  Iop  )  -op  (  Iop  o.  ( F `
 k ) ) ) )
11636, 115syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop  o.  Iop  )  -op  (  Iop  o.  ( F `  k ) ) ) )
11746hoid1i 26381 . . . . . . . . . . . . . 14  |-  (  Iop 
o.  Iop  )  =  Iop
118117a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (  Iop  o.  Iop  )  =  Iop  )
119 hoico2 26349 . . . . . . . . . . . . . 14  |-  ( ( F `  k ) : ~H --> ~H  ->  (  Iop  o.  ( F `
 k ) )  =  ( F `  k ) )
12036, 119syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (  Iop  o.  ( F `  k ) )  =  ( F `  k
) )
121118, 120oveq12d 6300 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
(  Iop  o.  Iop  )  -op  (  Iop  o.  ( F `  k ) ) )  =  (  Iop  -op  ( F `  k ) ) )
122116, 121eqtrd 2508 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  (  Iop  -op  ( F `  k ) ) )
123 hmoplin 26534 . . . . . . . . . . . . . 14  |-  ( ( F `  k )  e.  HrmOp  ->  ( F `  k )  e.  LinOp )
12415, 123syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  ( F `  k )  e.  LinOp )
125 hoddi 26582 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  e.  LinOp  /\  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  -> 
( ( F `  k )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
12646, 125mp3an2 1312 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  LinOp  /\  ( F `  k ) : ~H --> ~H )  -> 
( ( F `  k )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
127124, 36, 126syl2anc 661 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
128 hoico1 26348 . . . . . . . . . . . . . 14  |-  ( ( F `  k ) : ~H --> ~H  ->  ( ( F `  k
)  o.  Iop  )  =  ( F `  k ) )
12936, 128syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  Iop  )  =  ( F `  k ) )
130129oveq1d 6297 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( F `  k )  o.  Iop  )  -op  ( ( F `
 k )  o.  ( F `  k
) ) )  =  ( ( F `  k )  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )
131127, 130eqtrd 2508 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( ( F `
 k )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
132122, 131oveq12d 6300 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  ( (  Iop  -op  ( F `  k ) )  -op  ( ( F `  k )  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) )
13336, 46jctil 537 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )
)
134 hosubadd4 26406 . . . . . . . . . . 11  |-  ( ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  /\  (
( F `  k
) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
)  ->  ( (  Iop  -op  ( F `  k ) )  -op  ( ( F `  k )  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )  =  ( (  Iop  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( F `  k ) 
+op  ( F `  k ) ) ) )
135133, 36, 42, 134syl12anc 1226 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  -op  ( ( F `
 k )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
136132, 135eqtrd 2508 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
137 ho2times 26411 . . . . . . . . . . 11  |-  ( ( F `  k ) : ~H --> ~H  ->  ( 2  .op  ( F `
 k ) )  =  ( ( F `
 k )  +op  ( F `  k ) ) )
13836, 137syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  .op  ( F `  k ) )  =  ( ( F `  k )  +op  ( F `  k )
) )
139138oveq2d 6298 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( F `  k )  o.  ( F `  k ) ) )  -op  ( 2  .op  ( F `  k
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
140 hoaddsubass 26407 . . . . . . . . . . 11  |-  ( (  Iop  : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  =  (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) ) )
14146, 140mp3an1 1311 . . . . . . . . . 10  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  =  (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) ) )
14242, 38, 141syl2anc 661 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( F `  k )  o.  ( F `  k ) ) )  -op  ( 2  .op  ( F `  k
) ) )  =  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
143136, 139, 1423eqtr2d 2514 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
144111, 143eqtrd 2508 . . . . . . 7  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  =  (  Iop  +op  ( (
( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) )
145144oveq1d 6297 . . . . . 6  |-  ( k  e.  NN  ->  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
1467, 8, 9opsqrlem5 26736 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
147146oveq2d 6298 . . . . . . 7  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  =  (  Iop  -op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )
148147oveq2d 6298 . . . . . 6  |-  ( k  e.  NN  ->  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) )  =  ( 2  .op  (  Iop  -op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
149106, 145, 1483eqtr4d 2518 . . . . 5  |-  ( k  e.  NN  ->  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) )  =  ( 2  .op  (  Iop 
-op  ( F `  ( k  +  1 ) ) ) ) )
15033, 149breqtrd 4471 . . . 4  |-  ( k  e.  NN  ->  0hop  <_op  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) ) )
151 peano2nn 10544 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
15214ffvelrni 6018 . . . . . . 7  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  HrmOp )
153151, 152syl 16 . . . . . 6  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  HrmOp )
154 hmopd 26614 . . . . . 6  |-  ( (  Iop  e.  HrmOp  /\  ( F `  ( k  +  1 ) )  e.  HrmOp )  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp )
15513, 153, 154sylancr 663 . . . . 5  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp )
156 2re 10601 . . . . . 6  |-  2  e.  RR
157 2pos 10623 . . . . . 6  |-  0  <  2
158 leopmul 26726 . . . . . 6  |-  ( ( 2  e.  RR  /\  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp  /\  0  <  2
)  ->  ( 0hop  <_op 
(  Iop  -op  ( F `
 ( k  +  1 ) ) )  <->  0hop  <_op  ( 2  .op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) ) )
159156, 157, 158mp3an13 1315 . . . . 5  |-  ( (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp  ->  ( 0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) )  <->  0hop  <_op  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) ) ) )
160155, 159syl 16 . . . 4  |-  ( k  e.  NN  ->  ( 0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) )  <->  0hop  <_op  ( 2 
.op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) ) )
161150, 160mpbird 232 . . 3  |-  ( k  e.  NN  ->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) )
162 leop3 26717 . . . 4  |-  ( ( ( F `  (
k  +  1 ) )  e.  HrmOp  /\  Iop  e.  HrmOp )  ->  (
( F `  (
k  +  1 ) )  <_op  Iop  <->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) )
163153, 13, 162sylancl 662 . . 3  |-  ( k  e.  NN  ->  (
( F `  (
k  +  1 ) )  <_op  Iop  <->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) )
164161, 163mpbird 232 . 2  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) ) 
<_op  Iop  )
1652, 4, 6, 12, 164nn1suc 10553 1  |-  ( N  e.  NN  ->  ( F `  N )  <_op  Iop  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {csn 4027   class class class wbr 4447    X. cxp 4997    o. ccom 5003   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624    / cdiv 10202   NNcn 10532   2c2 10581    seqcseq 12070   ~Hchil 25509    +op chos 25528    .op chot 25529    -op chod 25530   0hopch0o 25533    Iop chio 25534   LinOpclo 25537   HrmOpcho 25540    <_op cleo 25548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cc 8811  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568  ax-hilex 25589  ax-hfvadd 25590  ax-hvcom 25591  ax-hvass 25592  ax-hv0cl 25593  ax-hvaddid 25594  ax-hfvmul 25595  ax-hvmulid 25596  ax-hvmulass 25597  ax-hvdistr1 25598  ax-hvdistr2 25599  ax-hvmul0 25600  ax-hfi 25669  ax-his1 25672  ax-his2 25673  ax-his3 25674  ax-his4 25675  ax-hcompl 25792
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-clim 13267  df-rlim 13268  df-sum 13465  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-hom 14572  df-cco 14573  df-rest 14671  df-topn 14672  df-0g 14690  df-gsum 14691  df-topgen 14692  df-pt 14693  df-prds 14696  df-xrs 14750  df-qtop 14755  df-imas 14756  df-xps 14758  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-submnd 15775  df-mulg 15858  df-cntz 16147  df-cmn 16593  df-psmet 18179  df-xmet 18180  df-met 18181  df-bl 18182  df-mopn 18183  df-fbas 18184  df-fg 18185  df-cnfld 18189  df-top 19163  df-bases 19165  df-topon 19166  df-topsp 19167  df-cld 19283  df-ntr 19284  df-cls 19285  df-nei 19362  df-cn 19491  df-cnp 19492  df-lm 19493  df-haus 19579  df-tx 19795  df-hmeo 19988  df-fil 20079  df-fm 20171  df-flim 20172  df-flf 20173  df-xms 20555  df-ms 20556  df-tms 20557  df-cfil 21426  df-cau 21427  df-cmet 21428  df-grpo 24866  df-gid 24867  df-ginv 24868  df-gdiv 24869  df-ablo 24957  df-subgo 24977  df-vc 25112  df-nv 25158  df-va 25161  df-ba 25162  df-sm 25163  df-0v 25164  df-vs 25165  df-nmcv 25166  df-ims 25167  df-dip 25284  df-ssp 25308  df-ph 25401  df-cbn 25452  df-hnorm 25558  df-hba 25559  df-hvsub 25561  df-hlim 25562  df-hcau 25563  df-sh 25797  df-ch 25812  df-oc 25843  df-ch0 25844  df-shs 25899  df-pjh 25986  df-hosum 26322  df-homul 26323  df-hodif 26324  df-h0op 26340  df-iop 26341  df-lnop 26433  df-hmop 26436  df-leop 26444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator