MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssov Structured version   Unicode version

Theorem oprssov 6424
Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007.)
Assertion
Ref Expression
oprssov  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem oprssov
StepHypRef Expression
1 ovres 6422 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A ( F  |`  ( C  X.  D
) ) B )  =  ( A F B ) )
21adantl 464 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A F B ) )
3 fndm 5660 . . . . . . 7  |-  ( G  Fn  ( C  X.  D )  ->  dom  G  =  ( C  X.  D ) )
43reseq2d 5093 . . . . . 6  |-  ( G  Fn  ( C  X.  D )  ->  ( F  |`  dom  G )  =  ( F  |`  ( C  X.  D
) ) )
543ad2ant2 1019 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  ( F  |`  ( C  X.  D ) ) )
6 funssres 5608 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
763adant2 1016 . . . . 5  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |` 
dom  G )  =  G )
85, 7eqtr3d 2445 . . . 4  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( F  |`  ( C  X.  D
) )  =  G )
98oveqd 6294 . . 3  |-  ( ( Fun  F  /\  G  Fn  ( C  X.  D
)  /\  G  C_  F
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
109adantr 463 . 2  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A
( F  |`  ( C  X.  D ) ) B )  =  ( A G B ) )
112, 10eqtr3d 2445 1  |-  ( ( ( Fun  F  /\  G  Fn  ( C  X.  D )  /\  G  C_  F )  /\  ( A  e.  C  /\  B  e.  D )
)  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    C_ wss 3413    X. cxp 4820   dom cdm 4822    |` cres 4824   Fun wfun 5562    Fn wfn 5563  (class class class)co 6277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-res 4834  df-iota 5532  df-fun 5570  df-fn 5571  df-fv 5576  df-ov 6280
This theorem is referenced by:  sspg  26041  ssps  26043
  Copyright terms: Public domain W3C validator