MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprpiece1res2 Structured version   Unicode version

Theorem oprpiece1res2 20649
Description: Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
oprpiece1.1  |-  A  e.  RR
oprpiece1.2  |-  B  e.  RR
oprpiece1.3  |-  A  <_  B
oprpiece1.4  |-  R  e. 
_V
oprpiece1.5  |-  S  e. 
_V
oprpiece1.6  |-  K  e.  ( A [,] B
)
oprpiece1.7  |-  F  =  ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
oprpiece1.9  |-  ( x  =  K  ->  R  =  P )
oprpiece1.10  |-  ( x  =  K  ->  S  =  Q )
oprpiece1.11  |-  ( y  e.  C  ->  P  =  Q )
oprpiece1.12  |-  G  =  ( x  e.  ( K [,] B ) ,  y  e.  C  |->  S )
Assertion
Ref Expression
oprpiece1res2  |-  ( F  |`  ( ( K [,] B )  X.  C
) )  =  G
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, K, y   
x, P    x, Q
Allowed substitution hints:    P( y)    Q( y)    R( x, y)    S( x, y)    F( x, y)    G( x, y)

Proof of Theorem oprpiece1res2
StepHypRef Expression
1 oprpiece1.6 . . . 4  |-  K  e.  ( A [,] B
)
2 oprpiece1.1 . . . . . 6  |-  A  e.  RR
32rexri 9540 . . . . 5  |-  A  e. 
RR*
4 oprpiece1.2 . . . . . 6  |-  B  e.  RR
54rexri 9540 . . . . 5  |-  B  e. 
RR*
6 oprpiece1.3 . . . . 5  |-  A  <_  B
7 ubicc2 11512 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
83, 5, 6, 7mp3an 1315 . . . 4  |-  B  e.  ( A [,] B
)
9 iccss2 11470 . . . 4  |-  ( ( K  e.  ( A [,] B )  /\  B  e.  ( A [,] B ) )  -> 
( K [,] B
)  C_  ( A [,] B ) )
101, 8, 9mp2an 672 . . 3  |-  ( K [,] B )  C_  ( A [,] B )
11 ssid 3476 . . 3  |-  C  C_  C
12 resmpt2 6291 . . 3  |-  ( ( ( K [,] B
)  C_  ( A [,] B )  /\  C  C_  C )  ->  (
( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )  |`  ( ( K [,] B )  X.  C
) )  =  ( x  e.  ( K [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) ) )
1310, 11, 12mp2an 672 . 2  |-  ( ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )  |`  ( ( K [,] B )  X.  C ) )  =  ( x  e.  ( K [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
14 oprpiece1.7 . . 3  |-  F  =  ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
1514reseq1i 5207 . 2  |-  ( F  |`  ( ( K [,] B )  X.  C
) )  =  ( ( x  e.  ( A [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )  |`  ( ( K [,] B )  X.  C
) )
16 oprpiece1.12 . . 3  |-  G  =  ( x  e.  ( K [,] B ) ,  y  e.  C  |->  S )
17 eqeq1 2455 . . . . 5  |-  ( R  =  if ( x  <_  K ,  R ,  S )  ->  ( R  =  S  <->  if (
x  <_  K ,  R ,  S )  =  S ) )
18 eqeq1 2455 . . . . 5  |-  ( S  =  if ( x  <_  K ,  R ,  S )  ->  ( S  =  S  <->  if (
x  <_  K ,  R ,  S )  =  S ) )
19 oprpiece1.11 . . . . . . 7  |-  ( y  e.  C  ->  P  =  Q )
2019ad2antlr 726 . . . . . 6  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  P  =  Q )
21 simpr 461 . . . . . . . 8  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  x  <_  K )
222, 4elicc2i 11465 . . . . . . . . . . . . 13  |-  ( K  e.  ( A [,] B )  <->  ( K  e.  RR  /\  A  <_  K  /\  K  <_  B
) )
2322simp1bi 1003 . . . . . . . . . . . 12  |-  ( K  e.  ( A [,] B )  ->  K  e.  RR )
241, 23ax-mp 5 . . . . . . . . . . 11  |-  K  e.  RR
2524, 4elicc2i 11465 . . . . . . . . . 10  |-  ( x  e.  ( K [,] B )  <->  ( x  e.  RR  /\  K  <_  x  /\  x  <_  B
) )
2625simp2bi 1004 . . . . . . . . 9  |-  ( x  e.  ( K [,] B )  ->  K  <_  x )
2726ad2antrr 725 . . . . . . . 8  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  K  <_  x )
2825simp1bi 1003 . . . . . . . . . 10  |-  ( x  e.  ( K [,] B )  ->  x  e.  RR )
2928ad2antrr 725 . . . . . . . . 9  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  x  e.  RR )
30 letri3 9564 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  K  e.  RR )  ->  ( x  =  K  <-> 
( x  <_  K  /\  K  <_  x ) ) )
3129, 24, 30sylancl 662 . . . . . . . 8  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  ( x  =  K  <->  ( x  <_  K  /\  K  <_  x
) ) )
3221, 27, 31mpbir2and 913 . . . . . . 7  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  x  =  K )
33 oprpiece1.9 . . . . . . 7  |-  ( x  =  K  ->  R  =  P )
3432, 33syl 16 . . . . . 6  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  R  =  P )
35 oprpiece1.10 . . . . . . 7  |-  ( x  =  K  ->  S  =  Q )
3632, 35syl 16 . . . . . 6  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  S  =  Q )
3720, 34, 363eqtr4d 2502 . . . . 5  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  x  <_  K )  ->  R  =  S )
38 eqidd 2452 . . . . 5  |-  ( ( ( x  e.  ( K [,] B )  /\  y  e.  C
)  /\  -.  x  <_  K )  ->  S  =  S )
3917, 18, 37, 38ifbothda 3925 . . . 4  |-  ( ( x  e.  ( K [,] B )  /\  y  e.  C )  ->  if ( x  <_  K ,  R ,  S )  =  S )
4039mpt2eq3ia 6253 . . 3  |-  ( x  e.  ( K [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S )
)  =  ( x  e.  ( K [,] B ) ,  y  e.  C  |->  S )
4116, 40eqtr4i 2483 . 2  |-  G  =  ( x  e.  ( K [,] B ) ,  y  e.  C  |->  if ( x  <_  K ,  R ,  S ) )
4213, 15, 413eqtr4i 2490 1  |-  ( F  |`  ( ( K [,] B )  X.  C
) )  =  G
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3071    C_ wss 3429   ifcif 3892   class class class wbr 4393    X. cxp 4939    |` cres 4943  (class class class)co 6193    |-> cmpt2 6195   RRcr 9385   RR*cxr 9521    <_ cle 9523   [,]cicc 11407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-pre-lttri 9460  ax-pre-lttrn 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-po 4742  df-so 4743  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-1st 6680  df-2nd 6681  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-icc 11411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator