MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabss Structured version   Unicode version

Theorem oprabss 6171
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 6129 . . 3  |-  Rel  { <. <. x ,  y
>. ,  z >.  | 
ph }
2 relssdmrn 5353 . . 3  |-  ( Rel 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } ) )
31, 2ax-mp 5 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )
4 reldmoprab 6170 . . . 4  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
5 df-rel 4842 . . . 4  |-  ( Rel 
dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  dom  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( _V  X.  _V ) )
64, 5mpbi 208 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  ( _V  X.  _V )
7 ssv 3371 . . 3  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  _V
8 xpss12 4940 . . 3  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  ( _V  X.  _V )  /\  ran  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  _V )  ->  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
)
96, 7, 8mp2an 672 . 2  |-  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
103, 9sstri 3360 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Colors of variables: wff setvar class
Syntax hints:   _Vcvv 2967    C_ wss 3323    X. cxp 4833   dom cdm 4835   ran crn 4836   Rel wrel 4840   {coprab 6087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-br 4288  df-opab 4346  df-xp 4841  df-rel 4842  df-cnv 4843  df-dm 4845  df-rn 4846  df-oprab 6090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator