MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabco Structured version   Unicode version

Theorem oprabco 6867
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
oprabco.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
oprabco.2  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
oprabco.3  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C
) )
Assertion
Ref Expression
oprabco  |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
Distinct variable groups:    x, y, A    x, B, y    x, D, y    x, H, y
Allowed substitution hints:    C( x, y)    F( x, y)    G( x, y)

Proof of Theorem oprabco
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 oprabco.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
21adantl 464 . . 3  |-  ( ( H  Fn  D  /\  ( x  e.  A  /\  y  e.  B
) )  ->  C  e.  D )
3 oprabco.2 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43a1i 11 . . 3  |-  ( H  Fn  D  ->  F  =  ( x  e.  A ,  y  e.  B  |->  C ) )
5 dffn5 5893 . . . 4  |-  ( H  Fn  D  <->  H  =  ( z  e.  D  |->  ( H `  z
) ) )
65biimpi 194 . . 3  |-  ( H  Fn  D  ->  H  =  ( z  e.  D  |->  ( H `  z ) ) )
7 fveq2 5848 . . 3  |-  ( z  =  C  ->  ( H `  z )  =  ( H `  C ) )
82, 4, 6, 7fmpt2co 6866 . 2  |-  ( H  Fn  D  ->  ( H  o.  F )  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C ) ) )
9 oprabco.3 . 2  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C
) )
108, 9syl6reqr 2462 1  |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    |-> cmpt 4452    o. ccom 4826    Fn wfn 5563   ` cfv 5568    |-> cmpt2 6279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-fv 5576  df-oprab 6281  df-mpt2 6282  df-1st 6783  df-2nd 6784
This theorem is referenced by:  oprab2co  6868
  Copyright terms: Public domain W3C validator