MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprunit Structured version   Unicode version

Theorem opprunit 16751
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunit.1  |-  U  =  (Unit `  R )
opprunit.2  |-  S  =  (oppr
`  R )
Assertion
Ref Expression
opprunit  |-  U  =  (Unit `  S )

Proof of Theorem opprunit
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunit.2 . . . . . . . . . . 11  |-  S  =  (oppr
`  R )
2 eqid 2441 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbas 16719 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  S )
4 eqid 2441 . . . . . . . . . 10  |-  ( .r
`  S )  =  ( .r `  S
)
5 eqid 2441 . . . . . . . . . 10  |-  (oppr `  S
)  =  (oppr `  S
)
6 eqid 2441 . . . . . . . . . 10  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
73, 4, 5, 6opprmul 16716 . . . . . . . . 9  |-  ( y ( .r `  (oppr `  S
) ) x )  =  ( x ( .r `  S ) y )
8 eqid 2441 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
92, 8, 1, 4opprmul 16716 . . . . . . . . 9  |-  ( x ( .r `  S
) y )  =  ( y ( .r
`  R ) x )
107, 9eqtr2i 2462 . . . . . . . 8  |-  ( y ( .r `  R
) x )  =  ( y ( .r
`  (oppr
`  S ) ) x )
1110eqeq1i 2448 . . . . . . 7  |-  ( ( y ( .r `  R ) x )  =  ( 1r `  R )  <->  ( y
( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) )
1211rexbii 2738 . . . . . 6  |-  ( E. y  e.  ( Base `  R ) ( y ( .r `  R
) x )  =  ( 1r `  R
)  <->  E. y  e.  (
Base `  R )
( y ( .r
`  (oppr
`  S ) ) x )  =  ( 1r `  R ) )
1312anbi2i 694 . . . . 5  |-  ( ( x  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  R
) x )  =  ( 1r `  R
) )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) )
14 eqid 2441 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
152, 14, 8dvdsr 16736 . . . . 5  |-  ( x ( ||r `
 R ) ( 1r `  R )  <-> 
( x  e.  (
Base `  R )  /\  E. y  e.  (
Base `  R )
( y ( .r
`  R ) x )  =  ( 1r
`  R ) ) )
165, 3opprbas 16719 . . . . . 6  |-  ( Base `  R )  =  (
Base `  (oppr
`  S ) )
17 eqid 2441 . . . . . 6  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
1816, 17, 6dvdsr 16736 . . . . 5  |-  ( x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
)  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) )
1913, 15, 183bitr4i 277 . . . 4  |-  ( x ( ||r `
 R ) ( 1r `  R )  <-> 
x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
) )
2019anbi2ci 696 . . 3  |-  ( ( x ( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) )  <->  ( x
( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) )
21 opprunit.1 . . . 4  |-  U  =  (Unit `  R )
22 eqid 2441 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
23 eqid 2441 . . . 4  |-  ( ||r `  S
)  =  ( ||r `  S
)
2421, 22, 14, 1, 23isunit 16747 . . 3  |-  ( x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) ) )
25 eqid 2441 . . . 4  |-  (Unit `  S )  =  (Unit `  S )
261, 22oppr1 16724 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  S
)
2725, 26, 23, 5, 17isunit 16747 . . 3  |-  ( x  e.  (Unit `  S
)  <->  ( x (
||r `  S ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
) ) )
2820, 24, 273bitr4i 277 . 2  |-  ( x  e.  U  <->  x  e.  (Unit `  S ) )
2928eqriv 2438 1  |-  U  =  (Unit `  S )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2714   class class class wbr 4290   ` cfv 5416  (class class class)co 6089   Basecbs 14172   .rcmulr 14237   1rcur 16601  opprcoppr 16712   ||rcdsr 16728  Unitcui 16729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-tpos 6743  df-recs 6830  df-rdg 6864  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-2 10378  df-3 10379  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-plusg 14249  df-mulr 14250  df-0g 14378  df-mgp 16590  df-ur 16602  df-oppr 16713  df-dvdsr 16731  df-unit 16732
This theorem is referenced by:  opprirred  16792  irredlmul  16798  opprdrng  16854  ply1divalg2  21608
  Copyright terms: Public domain W3C validator