MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgplusfval Structured version   Visualization version   Unicode version

Theorem oppgplusfval 17077
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.)
Hypotheses
Ref Expression
oppgval.2  |-  .+  =  ( +g  `  R )
oppgval.3  |-  O  =  (oppg
`  R )
oppgplusfval.4  |-  .+b  =  ( +g  `  O )
Assertion
Ref Expression
oppgplusfval  |-  .+b  = tpos  .+

Proof of Theorem oppgplusfval
StepHypRef Expression
1 oppgplusfval.4 . 2  |-  .+b  =  ( +g  `  O )
2 oppgval.2 . . . . . . 7  |-  .+  =  ( +g  `  R )
3 fvex 5889 . . . . . . 7  |-  ( +g  `  R )  e.  _V
42, 3eqeltri 2545 . . . . . 6  |-  .+  e.  _V
54tposex 7025 . . . . 5  |- tpos  .+  e.  _V
6 plusgid 15303 . . . . . 6  |-  +g  = Slot  ( +g  `  ndx )
76setsid 15242 . . . . 5  |-  ( ( R  e.  _V  /\ tpos  .+  e.  _V )  -> tpos  .+  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) , tpos  .+  >. )
) )
85, 7mpan2 685 . . . 4  |-  ( R  e.  _V  -> tpos  .+  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) , tpos  .+  >. )
) )
9 oppgval.3 . . . . . 6  |-  O  =  (oppg
`  R )
102, 9oppgval 17076 . . . . 5  |-  O  =  ( R sSet  <. ( +g  `  ndx ) , tpos  .+  >. )
1110fveq2i 5882 . . . 4  |-  ( +g  `  O )  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) , tpos  .+  >. )
)
128, 11syl6reqr 2524 . . 3  |-  ( R  e.  _V  ->  ( +g  `  O )  = tpos  .+  )
13 tpos0 7021 . . . . 5  |- tpos  (/)  =  (/)
146str0 15239 . . . . 5  |-  (/)  =  ( +g  `  (/) )
1513, 14eqtr2i 2494 . . . 4  |-  ( +g  `  (/) )  = tpos  (/)
16 reldmsets 15222 . . . . . . 7  |-  Rel  dom sSet
1716ovprc1 6339 . . . . . 6  |-  ( -.  R  e.  _V  ->  ( R sSet  <. ( +g  `  ndx ) , tpos  .+  >. )  =  (/) )
1810, 17syl5eq 2517 . . . . 5  |-  ( -.  R  e.  _V  ->  O  =  (/) )
1918fveq2d 5883 . . . 4  |-  ( -.  R  e.  _V  ->  ( +g  `  O )  =  ( +g  `  (/) ) )
20 fvprc 5873 . . . . . 6  |-  ( -.  R  e.  _V  ->  ( +g  `  R )  =  (/) )
212, 20syl5eq 2517 . . . . 5  |-  ( -.  R  e.  _V  ->  .+  =  (/) )
2221tposeqd 6994 . . . 4  |-  ( -.  R  e.  _V  -> tpos  .+  = tpos 
(/) )
2315, 19, 223eqtr4a 2531 . . 3  |-  ( -.  R  e.  _V  ->  ( +g  `  O )  = tpos  .+  )
2412, 23pm2.61i 169 . 2  |-  ( +g  `  O )  = tpos  .+
251, 24eqtri 2493 1  |-  .+b  = tpos  .+
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1452    e. wcel 1904   _Vcvv 3031   (/)c0 3722   <.cop 3965   ` cfv 5589  (class class class)co 6308  tpos ctpos 6990   ndxcnx 15196   sSet csts 15197   +g cplusg 15268  oppgcoppg 17074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-i2m1 9625  ax-1ne0 9626  ax-rrecex 9629  ax-cnre 9630
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-tpos 6991  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-nn 10632  df-2 10690  df-ndx 15202  df-slot 15203  df-sets 15205  df-plusg 15281  df-oppg 17075
This theorem is referenced by:  oppgplus  17078
  Copyright terms: Public domain W3C validator