MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppglsm Structured version   Unicode version

Theorem oppglsm 16231
Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
oppglsm.o  |-  O  =  (oppg
`  G )
oppglsm.p  |-  .(+)  =  (
LSSum `  G )
Assertion
Ref Expression
oppglsm  |-  ( T ( LSSum `  O ) U )  =  ( U  .(+)  T )

Proof of Theorem oppglsm
Dummy variables  u  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2450 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2450 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
3 oppglsm.p . . . . . . . 8  |-  .(+)  =  (
LSSum `  G )
41, 2, 3lsmfval 16227 . . . . . . 7  |-  ( G  e.  _V  ->  .(+)  =  ( u  e.  ~P ( Base `  G ) ,  t  e.  ~P ( Base `  G )  |->  ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) ) )
54tposeqd 6834 . . . . . 6  |-  ( G  e.  _V  -> tpos  .(+)  = tpos  (
u  e.  ~P ( Base `  G ) ,  t  e.  ~P ( Base `  G )  |->  ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) ) )
6 eqid 2450 . . . . . . . . . . . . 13  |-  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )  =  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )
76reldmmpt2 6287 . . . . . . . . . . . 12  |-  Rel  dom  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )
86mpt2fun 6278 . . . . . . . . . . . . 13  |-  Fun  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )
9 funforn 5711 . . . . . . . . . . . . 13  |-  ( Fun  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )  <->  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) : dom  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) -onto-> ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) )
108, 9mpbi 208 . . . . . . . . . . . 12  |-  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) ) : dom  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )
-onto->
ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )
11 tposfo2 6854 . . . . . . . . . . . 12  |-  ( Rel 
dom  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )  -> 
( ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) : dom  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) -onto-> ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )  -> tpos  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) : `' dom  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) -onto-> ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) ) ) )
127, 10, 11mp2 9 . . . . . . . . . . 11  |- tpos  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) ) : `' dom  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )
-onto->
ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )
13 forn 5707 . . . . . . . . . . 11  |-  (tpos  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) ) : `' dom  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )
-onto->
ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )  ->  ran tpos  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )  =  ran  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) ) )
1412, 13ax-mp 5 . . . . . . . . . 10  |-  ran tpos  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )  =  ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )
15 oppglsm.o . . . . . . . . . . . . . . . 16  |-  O  =  (oppg
`  G )
16 eqid 2450 . . . . . . . . . . . . . . . 16  |-  ( +g  `  O )  =  ( +g  `  O )
172, 15, 16oppgplus 15952 . . . . . . . . . . . . . . 15  |-  ( x ( +g  `  O
) y )  =  ( y ( +g  `  G ) x )
1817eqcomi 2462 . . . . . . . . . . . . . 14  |-  ( y ( +g  `  G
) x )  =  ( x ( +g  `  O ) y )
1918a1i 11 . . . . . . . . . . . . 13  |-  ( ( y  e.  u  /\  x  e.  t )  ->  ( y ( +g  `  G ) x )  =  ( x ( +g  `  O ) y ) )
2019mpt2eq3ia 6236 . . . . . . . . . . . 12  |-  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )  =  ( y  e.  u ,  x  e.  t  |->  ( x ( +g  `  O ) y ) )
2120tposmpt2 6868 . . . . . . . . . . 11  |- tpos  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )  =  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) )
2221rneqi 5150 . . . . . . . . . 10  |-  ran tpos  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )  =  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O
) y ) )
2314, 22eqtr3i 2480 . . . . . . . . 9  |-  ran  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) )  =  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O
) y ) )
2423a1i 11 . . . . . . . 8  |-  ( ( u  e.  ~P ( Base `  G )  /\  t  e.  ~P ( Base `  G ) )  ->  ran  ( y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G ) x ) )  =  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) ) )
2524mpt2eq3ia 6236 . . . . . . 7  |-  ( u  e.  ~P ( Base `  G ) ,  t  e.  ~P ( Base `  G )  |->  ran  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) ) )  =  ( u  e.  ~P ( Base `  G ) ,  t  e.  ~P ( Base `  G )  |->  ran  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O
) y ) ) )
2625tposmpt2 6868 . . . . . 6  |- tpos  ( u  e.  ~P ( Base `  G ) ,  t  e.  ~P ( Base `  G )  |->  ran  (
y  e.  u ,  x  e.  t  |->  ( y ( +g  `  G
) x ) ) )  =  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) ) )
275, 26syl6eq 2506 . . . . 5  |-  ( G  e.  _V  -> tpos  .(+)  =  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) ) ) )
28 fvex 5785 . . . . . . 7  |-  (oppg `  G
)  e.  _V
2915, 28eqeltri 2532 . . . . . 6  |-  O  e. 
_V
3015, 1oppgbas 15954 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  O )
31 eqid 2450 . . . . . . 7  |-  ( LSSum `  O )  =  (
LSSum `  O )
3230, 16, 31lsmfval 16227 . . . . . 6  |-  ( O  e.  _V  ->  ( LSSum `  O )  =  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) ) ) )
3329, 32ax-mp 5 . . . . 5  |-  ( LSSum `  O )  =  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) ) )
3427, 33syl6reqr 2509 . . . 4  |-  ( G  e.  _V  ->  ( LSSum `  O )  = tpos  .(+)  )
3534oveqd 6193 . . 3  |-  ( G  e.  _V  ->  ( T ( LSSum `  O
) U )  =  ( Ttpos  .(+)  U ) )
36 ovtpos 6846 . . 3  |-  ( Ttpos  .(+)  U )  =  ( U  .(+)  T )
3735, 36syl6eq 2506 . 2  |-  ( G  e.  _V  ->  ( T ( LSSum `  O
) U )  =  ( U  .(+)  T ) )
38 eqid 2450 . . . . . . 7  |-  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G
)  |->  (/) )  =  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) )
39 0ex 4506 . . . . . . 7  |-  (/)  e.  _V
40 eqidd 2451 . . . . . . 7  |-  ( ( t  =  T  /\  u  =  U )  -> 
(/)  =  (/) )
4138, 39, 40elovmpt2 6393 . . . . . 6  |-  ( x  e.  ( T ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) ) U )  <->  ( T  e.  ~P ( Base `  G
)  /\  U  e.  ~P ( Base `  G
)  /\  x  e.  (/) ) )
4241simp3bi 1005 . . . . 5  |-  ( x  e.  ( T ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) ) U )  ->  x  e.  (/) )
4342ssriv 3444 . . . 4  |-  ( T ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) ) U )  C_  (/)
44 ss0 3752 . . . 4  |-  ( ( T ( t  e. 
~P ( Base `  G
) ,  u  e. 
~P ( Base `  G
)  |->  (/) ) U ) 
C_  (/)  ->  ( T
( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) ) U )  =  (/) )
4543, 44ax-mp 5 . . 3  |-  ( T ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) ) U )  =  (/)
46 elpwi 3953 . . . . . . . . . . . . 13  |-  ( t  e.  ~P ( Base `  G )  ->  t  C_  ( Base `  G
) )
47463ad2ant2 1010 . . . . . . . . . . . 12  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  t  C_  ( Base `  G ) )
48 fvprc 5769 . . . . . . . . . . . . 13  |-  ( -.  G  e.  _V  ->  (
Base `  G )  =  (/) )
49483ad2ant1 1009 . . . . . . . . . . . 12  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  ( Base `  G
)  =  (/) )
5047, 49sseqtrd 3476 . . . . . . . . . . 11  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  t  C_  (/) )
51 ss0 3752 . . . . . . . . . . 11  |-  ( t 
C_  (/)  ->  t  =  (/) )
5250, 51syl 16 . . . . . . . . . 10  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  t  =  (/) )
53 eqid 2450 . . . . . . . . . 10  |-  u  =  u
54 mpt2eq12 6231 . . . . . . . . . 10  |-  ( ( t  =  (/)  /\  u  =  u )  ->  (
x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O
) y ) )  =  ( x  e.  (/) ,  y  e.  u  |->  ( x ( +g  `  O ) y ) ) )
5552, 53, 54sylancl 662 . . . . . . . . 9  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) )  =  ( x  e.  (/) ,  y  e.  u  |->  ( x ( +g  `  O
) y ) ) )
56 mpt20 6241 . . . . . . . . 9  |-  ( x  e.  (/) ,  y  e.  u  |->  ( x ( +g  `  O ) y ) )  =  (/)
5755, 56syl6eq 2506 . . . . . . . 8  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) )  =  (/) )
5857rneqd 5151 . . . . . . 7  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) )  =  ran  (/) )
59 rn0 5175 . . . . . . 7  |-  ran  (/)  =  (/)
6058, 59syl6eq 2506 . . . . . 6  |-  ( ( -.  G  e.  _V  /\  t  e.  ~P ( Base `  G )  /\  u  e.  ~P ( Base `  G ) )  ->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) )  =  (/) )
6160mpt2eq3dva 6235 . . . . 5  |-  ( -.  G  e.  _V  ->  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  O ) y ) ) )  =  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) ) )
6233, 61syl5eq 2502 . . . 4  |-  ( -.  G  e.  _V  ->  (
LSSum `  O )  =  ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G )  |->  (/) ) )
6362oveqd 6193 . . 3  |-  ( -.  G  e.  _V  ->  ( T ( LSSum `  O
) U )  =  ( T ( t  e.  ~P ( Base `  G ) ,  u  e.  ~P ( Base `  G
)  |->  (/) ) U ) )
64 fvprc 5769 . . . . . 6  |-  ( -.  G  e.  _V  ->  (
LSSum `  G )  =  (/) )
653, 64syl5eq 2502 . . . . 5  |-  ( -.  G  e.  _V  ->  .(+) 
=  (/) )
6665oveqd 6193 . . . 4  |-  ( -.  G  e.  _V  ->  ( U  .(+)  T )  =  ( U (/) T ) )
67 df-ov 6179 . . . . 5  |-  ( U
(/) T )  =  ( (/) `  <. U ,  T >. )
68 0fv 5808 . . . . 5  |-  ( (/) ` 
<. U ,  T >. )  =  (/)
6967, 68eqtri 2478 . . . 4  |-  ( U
(/) T )  =  (/)
7066, 69syl6eq 2506 . . 3  |-  ( -.  G  e.  _V  ->  ( U  .(+)  T )  =  (/) )
7145, 63, 703eqtr4a 2516 . 2  |-  ( -.  G  e.  _V  ->  ( T ( LSSum `  O
) U )  =  ( U  .(+)  T ) )
7237, 71pm2.61i 164 1  |-  ( T ( LSSum `  O ) U )  =  ( U  .(+)  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1757   _Vcvv 3054    C_ wss 3412   (/)c0 3721   ~Pcpw 3944   <.cop 3967   `'ccnv 4923   dom cdm 4924   ran crn 4925   Rel wrel 4929   Fun wfun 5496   -onto->wfo 5500   ` cfv 5502  (class class class)co 6176    |-> cmpt2 6178  tpos ctpos 6830   Basecbs 14262   +g cplusg 14326  oppgcoppg 15948   LSSumclsm 16223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458  ax-cnex 9425  ax-resscn 9426  ax-1cn 9427  ax-icn 9428  ax-addcl 9429  ax-addrcl 9430  ax-mulcl 9431  ax-mulrcl 9432  ax-mulcom 9433  ax-addass 9434  ax-mulass 9435  ax-distr 9436  ax-i2m1 9437  ax-1ne0 9438  ax-1rid 9439  ax-rnegex 9440  ax-rrecex 9441  ax-cnre 9442  ax-pre-lttri 9443  ax-pre-lttrn 9444  ax-pre-ltadd 9445  ax-pre-mulgt0 9446
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-nel 2644  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-pss 3428  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-tr 4470  df-eprel 4716  df-id 4720  df-po 4725  df-so 4726  df-fr 4763  df-we 4765  df-ord 4806  df-on 4807  df-lim 4808  df-suc 4809  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-riota 6137  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-om 6563  df-1st 6663  df-2nd 6664  df-tpos 6831  df-recs 6918  df-rdg 6952  df-er 7187  df-en 7397  df-dom 7398  df-sdom 7399  df-pnf 9507  df-mnf 9508  df-xr 9509  df-ltxr 9510  df-le 9511  df-sub 9684  df-neg 9685  df-nn 10410  df-2 10467  df-ndx 14265  df-slot 14266  df-base 14267  df-sets 14268  df-plusg 14339  df-oppg 15949  df-lsm 16225
This theorem is referenced by:  lsmmod2  16263  lsmdisj2r  16272
  Copyright terms: Public domain W3C validator