MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppglem Structured version   Unicode version

Theorem oppglem 15985
Description: Lemma for oppgbas 15986. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypotheses
Ref Expression
oppgbas.1  |-  O  =  (oppg
`  R )
oppglem.2  |-  E  = Slot 
N
oppglem.3  |-  N  e.  NN
oppglem.4  |-  N  =/=  2
Assertion
Ref Expression
oppglem  |-  ( E `
 R )  =  ( E `  O
)

Proof of Theorem oppglem
StepHypRef Expression
1 oppglem.2 . . . 4  |-  E  = Slot 
N
2 oppglem.3 . . . 4  |-  N  e.  NN
31, 2ndxid 14314 . . 3  |-  E  = Slot  ( E `  ndx )
4 oppglem.4 . . . 4  |-  N  =/=  2
51, 2ndxarg 14313 . . . . 5  |-  ( E `
 ndx )  =  N
6 plusgndx 14392 . . . . 5  |-  ( +g  ` 
ndx )  =  2
75, 6neeq12i 2741 . . . 4  |-  ( ( E `  ndx )  =/=  ( +g  `  ndx ) 
<->  N  =/=  2 )
84, 7mpbir 209 . . 3  |-  ( E `
 ndx )  =/=  ( +g  `  ndx )
93, 8setsnid 14335 . 2  |-  ( E `
 R )  =  ( E `  ( R sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  R
) >. ) )
10 eqid 2454 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
11 oppgbas.1 . . . 4  |-  O  =  (oppg
`  R )
1210, 11oppgval 15982 . . 3  |-  O  =  ( R sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  R
) >. )
1312fveq2i 5803 . 2  |-  ( E `
 O )  =  ( E `  ( R sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  R
) >. ) )
149, 13eqtr4i 2486 1  |-  ( E `
 R )  =  ( E `  O
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1758    =/= wne 2648   <.cop 3992   ` cfv 5527  (class class class)co 6201  tpos ctpos 6855   NNcn 10434   2c2 10483   ndxcnx 14290   sSet csts 14291  Slot cslot 14292   +g cplusg 14358  oppgcoppg 15980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-i2m1 9462  ax-1ne0 9463  ax-rrecex 9466  ax-cnre 9467
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-tpos 6856  df-recs 6943  df-rdg 6977  df-nn 10435  df-2 10492  df-ndx 14296  df-slot 14297  df-sets 14299  df-plusg 14371  df-oppg 15981
This theorem is referenced by:  oppgbas  15986  oppgtset  15987  oppgle  26260
  Copyright terms: Public domain W3C validator